Representing continuous t-norms in quantum computation with mixed states

A model of quantum computation is discussed in (Aharanov et al 1997 Proc. 13th Annual ACM Symp. on Theory of Computation, STOC pp 20–30) and (Tarasov 2002 J. Phys. A: Math. Gen. 35 5207–35) in which quantum gates are represented by quantum operations acting on mixed states. It allows one to use a quantum computational model in which connectives of a four-valued logic can be realized as quantum gates. In this model, we give a representation of certain functions, known as t-norms (Menger 1942 Proc. Natl Acad. Sci. USA 37 57–60), that generalize the triangle inequality for the probability distribution-valued metrics. As a consequence an interpretation of the standard operations associated with the basic fuzzy logic (Hajek 1998 Metamathematics of Fuzzy Logic (Trends in Logic vol 4) (Dordrecht: Kluwer)) is provided in the frame of quantum computation.

[1]  D. Butnariu,et al.  Triangular Norm-Based Measures and Games with Fuzzy Coalitions , 1993 .

[2]  Stan Gudder,et al.  Quantum Computational Logic , 2003 .

[3]  R. Nelsen An Introduction to Copulas , 1998 .

[4]  Vasily E. Tarasov Quantum computer with mixed states and four-valued logic , 2002 .

[5]  D. Foulis,et al.  Effect algebras and unsharp quantum logics , 1994 .

[6]  Daniele Mundici Ulam Games, Lukasiewicz Logic, and AF C*-Algebras , 1993, Fundam. Informaticae.

[7]  M. J. Frank On the simultaneous associativity ofF(x,y) andx +y -F(x,y) , 1979 .

[8]  Adrian Bowyer,et al.  Robust arithmetic for multivariate Bernstein-form polynomials , 2000, Comput. Aided Des..

[9]  Francesco Paoli,et al.  MV-Algebras and Quantum Computation , 2006, Stud Logica.

[10]  Sylvia Pulmannová,et al.  Orthocomplete effect algebras , 2003 .

[11]  Noam Nisan,et al.  Quantum circuits with mixed states , 1998, STOC '98.

[12]  Eugene L. Lawler,et al.  An Algorithm for "Ulam's Game" and its Application to Error Correcting Codes , 1995, Inf. Process. Lett..

[13]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[14]  D. Mundici Interpretation of AF -algebras in ukasiewicz sentential calculus , 1986 .

[15]  K. Menger Statistical Metrics. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[16]  M. J. Frank On the simultaneous associativity of F(x, y) and x+y-F(x, y). (Short Communication). , 1978 .

[17]  Gianpiero Cattaneo,et al.  Quantum computational structures , 2004 .

[18]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[19]  M. J. Frank On the simultaneous associativity ofF(x, y) andx+y−F(x, y) , 1978 .

[20]  Richard J. Greechie,et al.  Sequential products on effect algebras , 2002 .

[21]  Yuan Feng,et al.  Quantum Operation Quantum Fourier Transform And Semi-Definite Programming , 2004 .

[22]  Ming-Jun Lai Asymptotic formulae of multivariate Bernstein approximation , 1992 .

[23]  Hector Freytes,et al.  Fuzzy Propositional Logic Associated with Quantum Computational Gates , 2006 .

[24]  Roberto Giuntini,et al.  Reasoning in Quantum Theory: Sharp and Unsharp Quantum Logics , 2010 .

[25]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[26]  M. E. Naschie A very brief history of localization , 2000 .

[27]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[28]  Francesco Paoli,et al.  On some properties of quasi-MV algebras and $sqrt{prime}$-MV algebras , 2009 .

[29]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .

[30]  Hung T. Nguyen,et al.  Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference , 1994 .

[31]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.