Higman’s Lemma and Its Computational Content

Higman’s Lemma is a fascinating result in infinite combinatorics, with manyfold applications in logic and computer science. It has been proven several times using different formulations and methods. The aim of this paper is to look at Higman’s Lemma from a computational and comparative point of view. We give a proof of Higman’s Lemma that uses the same combinatorial idea as Nash-Williams’ indirect proof using the so-called minimal bad sequence argument, but which is constructive. For the case of a two letter alphabet such a proof was given by Coquand. Using more flexible structures, we present a proof that works for an arbitrary well-quasiordered alphabet. We report on a formalization of this proof in the proof assistant Minlog, and discuss machine extracted terms (in an extension of Godel’s system T) expressing its computational content.

[1]  Hélène Touzet A Characterisation of Multiply Recursive Functions with Higman's Lemma , 2002, Inf. Comput..

[2]  Christian Sternagel Certified Kruskal's Tree Theorem , 2014, J. Formaliz. Reason..

[3]  Dick H. J. Jongh,et al.  Well-partial orderings and hierarchies , 1977 .

[4]  Jean Goubault-Larrecq,et al.  A Constructive Proof of the Topological Kruskal Theorem , 2013, MFCS.

[5]  Monika Seisenberger,et al.  An Inductive Version of Nash-Williams' Minimal-Bad-Sequence Argument for Higman's Lemma , 2000, TYPES.

[6]  M. Seisenberger On the Constructive Content of Proofs , 2003 .

[7]  Michael Rathjen,et al.  Proof-Theoretic Investigations on Kruskal's Theorem , 1993, Ann. Pure Appl. Log..

[8]  Mizuhito Ogawa,et al.  Generation of a Linear Time Query Processing Algorithm Based on Well-Quasi-Orders , 2001, TACS.

[9]  Francisco-Jesús Martín-Mateos,et al.  Proof Pearl: a Formal Proof of Higman’s Lemma in ACL2 , 2005, Journal of Automated Reasoning.

[10]  F. Richman,et al.  Well Quasi-Ordered Sets , 1993 .

[11]  Chetan R. Murthy Extracting Constructive Content From Classical Proofs , 1990 .

[12]  Christine Paulin-Mohring,et al.  The coq proof assistant reference manual , 2000 .

[13]  Wim Veldman,et al.  An intuitionistic proof of Kruskal’s theorem , 2004, Arch. Math. Log..

[14]  Ryu Hasegawa,et al.  Well-Ordering of Algebras and Kruskal's Theorem , 1994, Logic, Language and Computation.

[15]  James R. Russell,et al.  A constructive proof of Higman's lemma , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[16]  Kenji Miyamoto,et al.  Minlog - A Tool for Program Extraction Supporting Algebras and Coalgebras , 2011, CALCO.

[17]  Bezem,et al.  Ramsey's theorem and the pigeonhole principle in intuitionistic mathematics , 1993 .

[18]  Thomas Powell,et al.  Applying Gödel's Dialectica Interpretation to Obtain a Constructive Proof of Higman's Lemma , 2012, CL&C.

[19]  J. Girard Proof Theory and Logical Complexity , 1989 .

[20]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .

[21]  Elias Tahhan-Bittar,et al.  Ordinal Recursive Bounds for Higman's Theorem , 1998, Theor. Comput. Sci..

[22]  Stefan Berghofer,et al.  A Constructive Proof of Higman's Lemma in Isabelle , 2003, TYPES.

[23]  Monika Seisenberger,et al.  Kruskal’s Tree Theorem in a Constructive Theory of Inductive Definitions , 2001 .

[24]  Daniel Fridlender Higman's lemma in type theory , 1998 .

[25]  Ulrich Berger,et al.  Program Extraction from Normalization Proofs , 2006, Stud Logica.

[26]  C. Nash-Williams On well-quasi-ordering infinite trees , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.

[27]  Hélène Touzet Propriétés combinatoires pour la terminaison de systèmes de réécriture. (Combinatorial properties for termination in term rewriting theory) , 1997 .

[28]  Daniel Fridlender Ramsey's Theorem in type theory , 1993 .

[29]  Helmut Schwichtenberg,et al.  Proofs and Computations , 2012, Perspectives in logic.

[30]  Stephen G. Simpson,et al.  Ein in der reinen Zahlentheorie unbeweisbarer Satz über endliche Folgen von natürlichen Zahlen , 1985, Arch. Math. Log..

[31]  Thierry Coquand,et al.  Stop When You Are Almost-Full - Adventures in Constructive Termination , 2012, ITP.

[32]  T. Coquand,et al.  A proof of Higman's lemma by structural induction , 1993 .