Higman’s Lemma and Its Computational Content
暂无分享,去创建一个
Monika Seisenberger | Helmut Schwichtenberg | Franziskus Wiesnet | H. Schwichtenberg | M. Seisenberger | Franziskus Wiesnet
[1] Hélène Touzet. A Characterisation of Multiply Recursive Functions with Higman's Lemma , 2002, Inf. Comput..
[2] Christian Sternagel. Certified Kruskal's Tree Theorem , 2014, J. Formaliz. Reason..
[3] Dick H. J. Jongh,et al. Well-partial orderings and hierarchies , 1977 .
[4] Jean Goubault-Larrecq,et al. A Constructive Proof of the Topological Kruskal Theorem , 2013, MFCS.
[5] Monika Seisenberger,et al. An Inductive Version of Nash-Williams' Minimal-Bad-Sequence Argument for Higman's Lemma , 2000, TYPES.
[6] M. Seisenberger. On the Constructive Content of Proofs , 2003 .
[7] Michael Rathjen,et al. Proof-Theoretic Investigations on Kruskal's Theorem , 1993, Ann. Pure Appl. Log..
[8] Mizuhito Ogawa,et al. Generation of a Linear Time Query Processing Algorithm Based on Well-Quasi-Orders , 2001, TACS.
[9] Francisco-Jesús Martín-Mateos,et al. Proof Pearl: a Formal Proof of Higman’s Lemma in ACL2 , 2005, Journal of Automated Reasoning.
[10] F. Richman,et al. Well Quasi-Ordered Sets , 1993 .
[11] Chetan R. Murthy. Extracting Constructive Content From Classical Proofs , 1990 .
[12] Christine Paulin-Mohring,et al. The coq proof assistant reference manual , 2000 .
[13] Wim Veldman,et al. An intuitionistic proof of Kruskal’s theorem , 2004, Arch. Math. Log..
[14] Ryu Hasegawa,et al. Well-Ordering of Algebras and Kruskal's Theorem , 1994, Logic, Language and Computation.
[15] James R. Russell,et al. A constructive proof of Higman's lemma , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.
[16] Kenji Miyamoto,et al. Minlog - A Tool for Program Extraction Supporting Algebras and Coalgebras , 2011, CALCO.
[17] Bezem,et al. Ramsey's theorem and the pigeonhole principle in intuitionistic mathematics , 1993 .
[18] Thomas Powell,et al. Applying Gödel's Dialectica Interpretation to Obtain a Constructive Proof of Higman's Lemma , 2012, CL&C.
[19] J. Girard. Proof Theory and Logical Complexity , 1989 .
[20] Graham Higman,et al. Ordering by Divisibility in Abstract Algebras , 1952 .
[21] Elias Tahhan-Bittar,et al. Ordinal Recursive Bounds for Higman's Theorem , 1998, Theor. Comput. Sci..
[22] Stefan Berghofer,et al. A Constructive Proof of Higman's Lemma in Isabelle , 2003, TYPES.
[23] Monika Seisenberger,et al. Kruskal’s Tree Theorem in a Constructive Theory of Inductive Definitions , 2001 .
[24] Daniel Fridlender. Higman's lemma in type theory , 1998 .
[25] Ulrich Berger,et al. Program Extraction from Normalization Proofs , 2006, Stud Logica.
[26] C. Nash-Williams. On well-quasi-ordering infinite trees , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.
[27] Hélène Touzet. Propriétés combinatoires pour la terminaison de systèmes de réécriture. (Combinatorial properties for termination in term rewriting theory) , 1997 .
[28] Daniel Fridlender. Ramsey's Theorem in type theory , 1993 .
[29] Helmut Schwichtenberg,et al. Proofs and Computations , 2012, Perspectives in logic.
[30] Stephen G. Simpson,et al. Ein in der reinen Zahlentheorie unbeweisbarer Satz über endliche Folgen von natürlichen Zahlen , 1985, Arch. Math. Log..
[31] Thierry Coquand,et al. Stop When You Are Almost-Full - Adventures in Constructive Termination , 2012, ITP.
[32] T. Coquand,et al. A proof of Higman's lemma by structural induction , 1993 .