Diversity of degradation signals in the ubiquitin–proteasome system

[1]  Jeffrey L Brodsky,et al.  The Recognition and Retrotranslocation of Misfolded Proteins from the Endoplasmic Reticulum , 2008, Traffic.

[2]  John A Tainer,et al.  A SIM-ultaneous role for SUMO and ubiquitin. , 2008, Trends in biochemical sciences.

[3]  Songyu Wang,et al.  Lectins sweet-talk proteins into ERAD , 2008, Nature Cell Biology.

[4]  A. Weissman,et al.  Ubiquitin ligases, critical mediators of endoplasmic reticulum-associated degradation. , 2007, Seminars in cell & developmental biology.

[5]  Y. Kwon,et al.  The mammalian N-end rule pathway: new insights into its components and physiological roles. , 2007, Trends in biochemical sciences.

[6]  Y. Wolf,et al.  Global Analysis of Posttranslational Protein Arginylation , 2007, PLoS biology.

[7]  P. Muchowski,et al.  Chaperone Functions of the E3 Ubiquitin Ligase CHIP* , 2007, Journal of Biological Chemistry.

[8]  E. Wiertz,et al.  Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3 , 2007, The Journal of cell biology.

[9]  J Wade Harper,et al.  Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. , 2007, Molecular cell.

[10]  Michal Sharon,et al.  Mechanism of auxin perception by the TIR1 ubiquitin ligase , 2007, Nature.

[11]  Takashi Yamane,et al.  Structural basis for the selection of glycosylated substrates by SCFFbs1 ubiquitin ligase , 2007, Proceedings of the National Academy of Sciences.

[12]  Bernd Bukau,et al.  The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. , 2007, Trends in cell biology.

[13]  Wei Li,et al.  A ubiquitin ligase transfers preformed polyubiquitin chains from a conjugating enzyme to a substrate , 2007, Nature.

[14]  M. Hochstrasser,et al.  Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue , 2007, Nature Cell Biology.

[15]  P. Coffino,et al.  Proteasome substrate degradation requires association plus extended peptide , 2007, The EMBO journal.

[16]  Joon-No Lee,et al.  Sterol-regulated Degradation of Insig-1 Mediated by the Membrane-bound Ubiquitin Ligase gp78* , 2006, Journal of Biological Chemistry.

[17]  M. Hochstrasser,et al.  Spatially regulated ubiquitin ligation by an ER/nuclear membrane ligase , 2006, Nature.

[18]  Anindya Dutta,et al.  UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation. , 2006, Molecular cell.

[19]  C. Fan,et al.  Sequential Quality-Control Checkpoints Triage Misfolded Cystic Fibrosis Transmembrane Conductance Regulator , 2006, Cell.

[20]  Thomas Sommer,et al.  A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery , 2006, Nature Cell Biology.

[21]  Tom A. Rapoport,et al.  Distinct Ubiquitin-Ligase Complexes Define Convergent Pathways for the Degradation of ER Proteins , 2006, Cell.

[22]  D. Ng,et al.  Have you HRD? Understanding ERAD Is DOAble! , 2006, Cell.

[23]  M. Hochstrasser,et al.  An amphipathic helix targets serum and glucocorticoid-induced kinase 1 to the endoplasmic reticulum-associated ubiquitin-conjugation machinery. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[24]  S. Gygi,et al.  Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology , 2006, Nature Cell Biology.

[25]  J. Schneider-Mergener,et al.  ClpS is an essential component of the N-end rule pathway in Escherichia coli , 2006, Nature.

[26]  M. Hochstrasser,et al.  Membrane and soluble substrates of the Doa10 ubiquitin ligase are degraded by distinct pathways , 2006, The EMBO journal.

[27]  M. Rauh,et al.  Deficiency of UBR1, a ubiquitin ligase of the N-end rule pathway, causes pancreatic dysfunction, malformations and mental retardation (Johanson-Blizzard syndrome) , 2005, Nature Genetics.

[28]  Min Jae Lee,et al.  RGS4 and RGS5 are in vivo substrates of the N-end rule pathway. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  A. Varshavsky,et al.  The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators , 2005, Nature.

[30]  M. Pagano,et al.  Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase. , 2005, Molecular cell.

[31]  H. Paulson,et al.  CHIP Suppresses Polyglutamine Aggregation and Toxicity In Vitro and In Vivo , 2005, The Journal of Neuroscience.

[32]  R. Poon,et al.  The N-terminal Regulatory Domain of Cyclin A Contains Redundant Ubiquitination Targeting Sequences and Acceptor Sites , 2005, Cell cycle.

[33]  T. Sommer,et al.  Ubx2 links the Cdc48 complex to ER-associated protein degradation , 2005, Nature Cell Biology.

[34]  Woong Kim,et al.  Yos9p detects and targets misfolded glycoproteins for ER-associated degradation. , 2005, Molecular cell.

[35]  M. Nita-Lazar,et al.  Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD. , 2005, Molecular cell.

[36]  B. Song,et al.  Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. , 2005, Molecular cell.

[37]  J. Weissman,et al.  Exploration of the topological requirements of ERAD identifies Yos9p as a lectin sensor of misfolded glycoproteins in the ER lumen. , 2005, Molecular cell.

[38]  R. Takahashi,et al.  In vivo evidence of CHIP up‐regulation attenuating tau aggregation , 2005, Journal of neurochemistry.

[39]  Min Jae Lee,et al.  A Family of Mammalian E3 Ubiquitin Ligases That Contain the UBR Box Motif and Recognize N-Degrons , 2005, Molecular and Cellular Biology.

[40]  T. Sommer,et al.  ERAD: the long road to destruction , 2005, Nature Cell Biology.

[41]  R. Mayer,et al.  Ubiquitin and ubiquitin-like proteins as multifunctional signals , 2005, Nature Reviews Molecular Cell Biology.

[42]  K. Cadwell,et al.  Ubiquitination on Nonlysine Residues by a Viral E3 Ubiquitin Ligase , 2005, Science.

[43]  Kazuhiro Iwai,et al.  Glycoprotein‐specific ubiquitin ligases recognize N‐glycans in unfolded substrates , 2005, EMBO reports.

[44]  A. Shearer,et al.  Lipid‐mediated, reversible misfolding of a sterol‐sensing domain protein , 2005, The EMBO journal.

[45]  D. Ng,et al.  Search and Destroy: ER Quality Control and ER-Associated Protein Degradation , 2005, Critical reviews in biochemistry and molecular biology.

[46]  Raymond J. Deshaies,et al.  Function and regulation of cullin–RING ubiquitin ligases , 2005, Nature Reviews Molecular Cell Biology.

[47]  M. Pagano,et al.  Structural Basis of the Cks 1-Dependent Recognition of p 27 Kip 1 by the SCFSkp 2 Ubiquitin Ligase , 2005 .

[48]  Mike Tyers,et al.  A hitchhiker's guide to the cullin ubiquitin ligases: SCF and its kin. , 2004, Biochimica et biophysica acta.

[49]  A. Ciechanover,et al.  The Tumor Suppressor Protein p16INK4a and the Human Papillomavirus Oncoprotein-58 E7 Are Naturally Occurring Lysine-less Proteins That Are Degraded by the Ubiquitin System , 2004, Journal of Biological Chemistry.

[50]  J. Harper,et al.  Interwoven Ubiquitination Oscillators and Control of Cell Cycle Transitions , 2004, Science's STKE.

[51]  K. Nakayama,et al.  Interaction of U‐box‐type ubiquitin‐protein ligases (E3s) with molecular chaperones , 2004, Genes to cells : devoted to molecular & cellular mechanisms.

[52]  D. Ng,et al.  Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control , 2004, The Journal of cell biology.

[53]  T. Mizushima,et al.  Structural basis of sugar-recognizing ubiquitin ligase , 2004, Nature Structural &Molecular Biology.

[54]  R. Spiro Role of N-linked polymannose oligosaccharides in targeting glycoproteins for endoplasmic reticulum-associated degradation , 2004, Cellular and Molecular Life Sciences CMLS.

[55]  A. Ciechanover,et al.  N-terminal ubiquitination: more protein substrates join in. , 2004, Trends in cell biology.

[56]  Robert E. Cohen,et al.  Proteasomes and their kin: proteases in the machine age , 2004, Nature Reviews Molecular Cell Biology.

[57]  A. Shearer,et al.  Structural Control of Endoplasmic Reticulum-associated Degradation , 2004, Journal of Biological Chemistry.

[58]  A. Ciechanover,et al.  The Tumor Suppressor Protein p 16 INK 4 a and the Human Papillomavirus Oncoprotein-58 E 7 Are Naturally Occurring Lysine-less Proteins , 2004 .

[59]  S. Miyamoto,et al.  Sequential Modification of NEMO/IKKγ by SUMO-1 and Ubiquitin Mediates NF-κB Activation by Genotoxic Stress , 2003, Cell.

[60]  M. Pagano,et al.  Proteasome-Mediated Degradation of p21 via N-Terminal Ubiquitinylation , 2003, Cell.

[61]  Tony Pawson,et al.  Mathematical Modeling Suggests Cooperative Interactions between a Disordered Polyvalent Ligand and a Single Receptor Site , 2003, Current Biology.

[62]  M. Hochstrasser,et al.  Ubiquitin-dependent degradation of the yeast Mat(alpha)2 repressor enables a switch in developmental state. , 2003, Genes & development.

[63]  Yukiko Yoshida,et al.  A novel role for N-glycans in the ERAD system. , 2003, Journal of biochemistry.

[64]  K. Nakayama,et al.  Ubiquitylation as a quality control system for intracellular proteins. , 2003, Journal of biochemistry.

[65]  R. Deshaies,et al.  Redundant Degrons Ensure the Rapid Destruction of Sic1 at the G1/S Transition of the Budding Yeast Cell Cycle , 2003, Cell Cycle.

[66]  Geng Wu,et al.  Structure of a -TrCP1-Skp1--Catenin Complex , 2003 .

[67]  D. Wolf,et al.  For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin–proteasome connection , 2003, The EMBO journal.

[68]  M. Tyers,et al.  Structural Basis for Phosphodependent Substrate Selection and Orientation by the SCFCdc4 Ubiquitin Ligase , 2003, Cell.

[69]  Holly McDonough,et al.  CHIP: a link between the chaperone and proteasome systems , 2003, Cell stress & chaperones.

[70]  K. Koretke,et al.  Bioinformatic analysis of ClpS, a protein module involved in prokaryotic and eukaryotic protein degradation. , 2003, Journal of structural biology.

[71]  Geng Wu,et al.  Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. , 2003, Molecular cell.

[72]  N. Emmerich,et al.  Ubiquitylation of BAG-1 Suggests a Novel Regulatory Mechanism during the Sorting of Chaperone Substrates to the Proteasome* , 2002, The Journal of Biological Chemistry.

[73]  G. Dittmar,et al.  Proteasome subunit Rpn1 binds ubiquitin-like protein domains , 2002, Nature Cell Biology.

[74]  R. Aebersold,et al.  Crucial Step in Cholesterol Homeostasis Sterols Promote Binding of SCAP to INSIG-1, a Membrane Protein that Facilitates Retention of SREBPs in ER , 2002, Cell.

[75]  R. Hampton ER-associated degradation in protein quality control and cellular regulation. , 2002, Current opinion in cell biology.

[76]  H. Kawasaki,et al.  E3 ubiquitin ligase that recognizes sugar chains , 2002, Nature.

[77]  A. Varshavsky,et al.  An Essential Role of N-Terminal Arginylation in Cardiovascular Development , 2002, Science.

[78]  Christopher J. Schofield,et al.  Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL , 2002, Nature.

[79]  W. C. Hwang,et al.  Structural and Functional Analysis of the Human Mitotic-specific Ubiquitin-conjugating Enzyme, UbcH10* , 2002, The Journal of Biological Chemistry.

[80]  M. Ivan,et al.  Structure of an HIF-1α-pVHL Complex: Hydroxyproline Recognition in Signaling , 2002, Science.

[81]  S. Elledge,et al.  Structure of the Cul1–Rbx1–Skp1–F boxSkp2 SCF ubiquitin ligase complex , 2002, Nature.

[82]  Hai Rao,et al.  Recognition of Specific Ubiquitin Conjugates Is Important for the Proteolytic Functions of the Ubiquitin-associated Domain Proteins Dsk2 and Rad23* , 2002, The Journal of Biological Chemistry.

[83]  Keiji Tanaka,et al.  CHIP is a chaperone‐dependent E3 ligase that ubiquitylates unfolded protein , 2001, EMBO reports.

[84]  Tony Pawson,et al.  Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication , 2001, Nature.

[85]  D. Cyr,et al.  CHIP Is a U-box-dependent E3 Ubiquitin Ligase , 2001, The Journal of Biological Chemistry.

[86]  M. Hochstrasser,et al.  A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matalpha2 repressor degradation. , 2001, Genes & development.

[87]  Michael I. Wilson,et al.  C. elegans EGL-9 and Mammalian Homologs Define a Family of Dioxygenases that Regulate HIF by Prolyl Hydroxylation , 2001, Cell.

[88]  K. Nasmyth,et al.  Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability , 2001, Nature.

[89]  M. Ivan,et al.  HIFα Targeted for VHL-Mediated Destruction by Proline Hydroxylation: Implications for O2 Sensing , 2001, Science.

[90]  Michael I. Wilson,et al.  Targeting of HIF-α to the von Hippel-Lindau Ubiquitylation Complex by O2-Regulated Prolyl Hydroxylation , 2001, Science.

[91]  A. Matouschek,et al.  ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. , 2001, Molecular cell.

[92]  A. Helenius Quality control in the secretory assembly line. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[93]  D. Cyr,et al.  Is a U-box-dependent E 3 Ubiquitin Ligase IDENTIFICATION OF Hsc 70 AS A TARGET FOR UBIQUITYLATION * , 2001 .

[94]  D. Harats,et al.  The Ubiquitin-Proteasome Pathway Mediates the Regulated Degradation of Mammalian 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase* , 2000, The Journal of Biological Chemistry.

[95]  Stephen J. Elledge,et al.  Insights into SCF ubiquitin ligases from the structure of the Skp1–Skp2 complex , 2000, Nature.

[96]  R. G. Kulka,et al.  Degradation Signals Recognized by the Ubc6p-Ubc7p Ubiquitin-Conjugating Enzyme Pair , 2000, Molecular and Cellular Biology.

[97]  A. Varshavsky,et al.  RGS4 Is Arginylated and Degraded by the N-end Rule Pathway in Vitro * , 2000, The Journal of Biological Chemistry.

[98]  A. Varshavsky,et al.  Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway , 2000, Nature.

[99]  E. Koonin,et al.  The U box is a modified RING finger — a common domain in ubiquitination , 2000, Current Biology.

[100]  M. Tyers,et al.  Proteolysis and the cell cycle: with this RING I do thee destroy. , 2000, Current opinion in genetics & development.

[101]  Martin Rechsteiner,et al.  Recognition of the polyubiquitin proteolytic signal , 2000, The EMBO journal.

[102]  P. Connell,et al.  The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins , 2000, Nature Cell Biology.

[103]  D. Cyr,et al.  The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation , 2000, Nature Cell Biology.

[104]  E. Hafen,et al.  Dispatched, a Novel Sterol-Sensing Domain Protein Dedicated to the Release of Cholesterol-Modified Hedgehog from Signaling Cells , 1999, Cell.

[105]  R. Conaway,et al.  The Rbx1 subunit of SCF and VHL E3 ubiquitin ligase activates Rub1 modification of cullins Cdc53 and Cul2. , 1999, Genes & development.

[106]  R. Gardner,et al.  A ‘distributed degron’ allows regulated entry into the ER degradation pathway , 1999, The EMBO journal.

[107]  S. Reed,et al.  Deregulated cyclin E induces chromosome instability , 1999, Nature.

[108]  B. Amati,et al.  Kip1 meets SKP2: new links in cell-cycle control , 1999, Nature Cell Biology.

[109]  M. Hochstrasser,et al.  Substrate Targeting in the Ubiquitin System , 1999, Cell.

[110]  S. Elledge,et al.  Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. , 1999, Science.

[111]  Stephen J. Elledge,et al.  The SCFβ-TRCP–ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro , 1999 .

[112]  M. Hochstrasser,et al.  Degradation Signal Masking by Heterodimerization of MATα2 and MATa1 Blocks Their Mutual Destruction by the Ubiquitin-Proteasome Pathway , 1998, Cell.

[113]  R. G. Kulka,et al.  Degradation signals for ubiquitin system proteolysis in Saccharomyces cerevisiae , 1998, The EMBO journal.

[114]  Christophe Béroud,et al.  Software and database for the analysis of mutations in the VHL gene , 1998, Nucleic Acids Res..

[115]  W. Pavan,et al.  Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene. , 1997, Science.

[116]  James M. Roberts,et al.  Cyclin E-CDK2 is a regulator of p27Kip1. , 1997, Genes & development.

[117]  M. Cummings,et al.  The Tail of a Ubiquitin-conjugating Enzyme Redirects Multi-ubiquitin Chain Synthesis from the Lysine 48-linked Configuration to a Novel Nonlysine-linked Form* , 1996, The Journal of Biological Chemistry.

[118]  M. Kirschner,et al.  Mutagenic analysis of the destruction signal of mitotic cyclins and structural characterization of ubiquitinated intermediates. , 1996, Molecular biology of the cell.

[119]  X. Hua,et al.  Regulated Cleavage of Sterol Regulatory Element Binding Proteins Requires Sequences on Both Sides of the Endoplasmic Reticulum Membrane (*) , 1996, The Journal of Biological Chemistry.

[120]  L. Baldi,et al.  Critical Role for Lysines 21 and 22 in Signal-induced, Ubiquitin-mediated Proteolysis of IB- (*) , 1996, The Journal of Biological Chemistry.

[121]  M. Hochstrasser Ubiquitin-dependent protein degradation. , 1996, Annual review of genetics.

[122]  T. Maniatis,et al.  Signal-induced degradation of I kappa B alpha requires site-specific ubiquitination. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[123]  A. Hershko,et al.  Reversible phosphorylation controls the activity of cyclosome-associated cyclin-ubiquitin ligase. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[124]  T. Maniatis,et al.  Signal induced degradation of IkBa requires site-specific ubiquitina-tion , 1995 .

[125]  Kim Nasmyth,et al.  The B-type cyclin kinase inhibitor p40 SIC1 controls the G1 to S transition in S. cerevisiae , 1994, Cell.

[126]  S. Jentsch,et al.  Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MATα2 repressor , 1993, Cell.

[127]  V. Chau,et al.  The bacterially expressed yeast CDC34 gene product can undergo autoubiquitination to form a multiubiquitin chain-linked protein. , 1993, The Journal of biological chemistry.

[128]  J. H. Strauss,et al.  Sindbis virus RNA polymerase is degraded by the N-end rule pathway. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[129]  S. Antonarakis,et al.  Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[130]  A. Varshavsky Naming a targeting signal , 1991, Cell.

[131]  A. Varshavsky,et al.  The recognition component of the N‐end rule pathway. , 1990, The EMBO journal.

[132]  A. Goffeau,et al.  Cloning and functional analysis of the arginyl-tRNA-protein transferase gene ATE1 of Saccharomyces cerevisiae. , 1990, The Journal of biological chemistry.

[133]  J. Goldstein,et al.  Regulation of the mevalonate pathway , 1990, Nature.

[134]  D. Ecker,et al.  A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. , 1989, Science.

[135]  A. Varshavsky,et al.  The degradation signal in a short-lived protein , 1989, Cell.

[136]  A. Ciechanover,et al.  Purification and characterization of arginyl-tRNA-protein transferase from rabbit reticulocytes. Its involvement in post-translational modification and degradation of acidic NH2 termini substrates of the ubiquitin pathway. , 1988, The Journal of biological chemistry.

[137]  H. Narita,et al.  The membrane domain of 3-hydroxy-3-methylglutaryl-coenzyme A reductase confers endoplasmic reticulum localization and sterol-regulated degradation onto beta-galactosidase. , 1988, The Journal of biological chemistry.

[138]  A. Varshavsky,et al.  In vivo half-life of a protein is a function of its amino-terminal residue. , 1986, Science.

[139]  A. Hershko,et al.  The protein substrate binding site of the ubiquitin-protein ligase system. , 1986, The Journal of biological chemistry.

[140]  J. Goldstein,et al.  Membrane-bound domain of HMG CoA reductase is required for sterol-enhanced degradation of the enzyme , 1985, Cell.

[141]  R. Stroud,et al.  Domain structure of 3-hydroxy-3-methylglutaryl coenzyme A reductase, a glycoprotein of the endoplasmic reticulum. , 1985, The Journal of biological chemistry.

[142]  D. Russell,et al.  Nucleotide sequence of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase, a glycoprotein of endoplasmic reticulum , 1984, Nature.

[143]  A. Hershko,et al.  ATP-dependent degradation of ubiquitin-protein conjugates. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[144]  R. Cummings,et al.  3-Hydroxy-3-methylglutaryl-CoA reductase: a transmembrane glycoprotein of the endoplasmic reticulum with N-linked "high-mannose" oligosaccharides. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[145]  A Ciechanover,et al.  Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[146]  A. Goldberg,et al.  Studies on the relationship between the degradative rates of proteins in vivo and their isoelectric points. , 1979, The Biochemical journal.

[147]  A. Goldberg,et al.  Relationship between in vivo degradative rates and isoelectric points of proteins. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[148]  M. Rabinovitz TRANSLATIONAL REPRESSION IN THE CONTROL OF GLOBIN CHAIN INITIATION BY HEMIN , 1974, Annals of the New York Academy of Sciences.

[149]  A. Goldberg,et al.  Intracellular protein degradation in mammalian and bacterial cells. , 1974, Annual review of biochemistry.

[150]  K. Weber,et al.  In vivo Degradation of Mutant Lac Repressor , 1970, Nature.

[151]  R T Schimke,et al.  Control of enzyme levels in animal tissues. , 1970, Annual review of biochemistry.