Site-selective ethanol conversion over supported copper catalysts

[1]  R. Palkovits,et al.  Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. , 2012, Angewandte Chemie.

[2]  Yong Wang,et al.  Direct conversion of bio-ethanol to isobutene on nanosized Zn(x)Zr(y)O(z) mixed oxides with balanced acid-base sites. , 2011, Journal of the American Chemical Society.

[3]  E. Longo,et al.  Insight into Copper‐Based Catalysts: Microwave‐Assisted Morphosynthesis, In Situ Reduction Studies, and Dehydrogenation of Ethanol , 2011 .

[4]  A. B. Gaspar,et al.  Chemicals from ethanol - The dehydrogenative route of the ethyl acetate one-pot synthesis , 2011 .

[5]  J. Lercher,et al.  Water–gas shift catalysts based on ionic liquid mediated supported Cu nanoparticles , 2010 .

[6]  Wenxiang Zhang,et al.  Direct transformation of ethanol to ethyl acetate on Cu/ZrO2 catalyst , 2010 .

[7]  A. B. Gaspar,et al.  The one-pot ethyl acetate syntheses: The role of the support in the oxidative and the dehydrogenative routes , 2010 .

[8]  A. B. Gaspar,et al.  Chemicals from ethanol—The ethyl acetate one-pot synthesis , 2009 .

[9]  Y. Chen,et al.  Dehydrogenation of ethanol on a 2Ru/ZrO2(111) surface: Density functional computations , 2009 .

[10]  T. Tsuchida,et al.  Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst , 2008 .

[11]  P. J. van Berge,et al.  Preparation and characterisation of spherical Co/SiO2 model catalysts with well-defined nano-sized cobalt crystallites and a comparison of their stability against oxidation with water , 2006 .

[12]  M. Dry,et al.  Stability of nanocrystals: thermodynamic analysis of oxidation and re-reduction of cobalt in water/hydrogen mixtures. , 2005, The journal of physical chemistry. B.

[13]  R. Gómez,et al.  Preparation of TiO2-ZrO2 mixed oxides with controlled acid-basic properties , 2004 .

[14]  T. Kurabayashi,et al.  Effective formation of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst , 2004 .

[15]  J. Hanson,et al.  Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides. , 2003, Journal of the American Chemical Society.

[16]  F. Chang,et al.  Dehydrogenation of ethanol over copper catalysts on rice husk ash prepared by incipient wetness impregnation , 2003 .

[17]  T. Kurabayashi,et al.  Direct synthesis of ethyl acetate from ethanol carried out under pressure , 2002 .

[18]  T. Kurabayashi,et al.  Direct synthesis of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst , 2002 .

[19]  K. Hadjiivanov,et al.  FTIR study of CO and NOx adsorption and co-adsorption on Cu/silicalite-1 , 2001 .

[20]  A. Bell,et al.  Investigation of CO and CO2 Adsorption on Tetragonal and Monoclinic Zirconia , 2001 .

[21]  A. Bell,et al.  The effects of synthesis and pretreatment conditions on the bulk structure and surface properties of zirconia , 2000 .

[22]  S. J. Morrison,et al.  The reactions of ethanol over M/CeO2 catalysts: Evidence of carbon–carbon bond dissociation at low temperatures over Rh/CeO2 , 2000 .

[23]  M. Vannice,et al.  Determination of the Dispersion and Surface Oxidation States of Supported Cu Catalysts , 1998 .

[24]  E. Iglesia,et al.  Structure and Surface and Catalytic Properties of Mg-Al Basic Oxides , 1998 .

[25]  A. Guerrero-Ruíz,et al.  Interaction of Carbon Dioxide with the Surface of Zirconia Polymorphs , 1998 .

[26]  S. Bordiga,et al.  A surface study of monoclinic zirconia (m-ZrO2) , 1997 .

[27]  D. Bianchi,et al.  Intermediate species on zirconia supported methanol aerogel catalysts. III: Adsorption of carbon monoxide on copper containing solids , 1994 .

[28]  N. Iwasa,et al.  Reforming of ethanol-dehydrogenation to ethyl acetate and steam reforming to acetic acid over copper-based catalysts , 1991 .

[29]  K. Hadjiivanov,et al.  FTIR study of CO and NO adsorption and coadsorption on a Cu/SiO2 catalyst: Probing the oxidation state of copper , 2001 .

[30]  W. Hertl Surface chemistry of zirconia polymorphs , 1989 .