Identification of hemifield single trial PVEP on the basis of generalized dynamic neural network classifiers

[1]  H. Witte,et al.  Identification of the stimulated hemiretinae using a reduced number of PVEP trials. , 1998, Electroencephalography and clinical neurophysiology.

[2]  Miroslaw Galicki,et al.  The Planning of Robotic Optimal Motions in the Presence of Obstacles , 1998, Int. J. Robotics Res..

[3]  A. Ademoglu,et al.  Analysis of pattern reversal visual evoked potentials (PRVEPs) by spline wavelets , 1997, IEEE Transactions on Biomedical Engineering.

[4]  A Bezerianos,et al.  Robust moving averages, with Hopfield neural network implementation, for monitoring evoked potential signals. , 1997, Electroencephalography and clinical neurophysiology.

[5]  D Lehmann,et al.  Instantaneous frequency maps, dipole models and potential distributions of pattern reversal-evoked potential fields for correct recognition of stimulated hemiretinae. , 1996, Electroencephalography and clinical neurophysiology.

[6]  N Nakasato,et al.  Neuromagnetic evidence that the P100 component of the pattern reversal visual evoked response originates in the bottom of the calcarine fissure. , 1996, Electroencephalography and clinical neurophysiology.

[7]  J. Achimowicz,et al.  Variability analysis of visual evoked potentials in humans by pattern recognition in phase domain. , 1995, Acta neurobiologiae experimentalis.

[8]  Marios M. Polycarpou,et al.  High-order neural network structures for identification of dynamical systems , 1995, IEEE Trans. Neural Networks.

[9]  B H Jansen,et al.  Selective Averaging of Evoked Potentials using Trajectory-Based Clustering , 1994, Methods of Information in Medicine.

[10]  G G Celesia,et al.  Identification of the hemisphere activated by hemifield visual stimulation using a single equivalent dipole model. , 1993, Electroencephalography and clinical neurophysiology.

[11]  Russell Reed,et al.  Pruning algorithms-a survey , 1993, IEEE Trans. Neural Networks.

[12]  Jocelyn Sietsma,et al.  Creating artificial neural networks that generalize , 1991, Neural Networks.

[13]  R. V. Dooren,et al.  A Chebyshev technique for solving nonlinear optimal control problems , 1988 .

[14]  PD Thompson A Textbook of Clinical Neurophysiology , 1988 .

[15]  C. E. Wright,et al.  Visual evoked potentials in acute optic neuritis , 1985 .

[16]  J Möcks,et al.  Variability of single visual evoked potentials evaluated by two new statistical tests. , 1984, Electroencephalography and clinical neurophysiology.

[17]  D. Lehmann,et al.  Reference-free identification of components of checkerboard-evoked multichannel potential fields. , 1980, Electroencephalography and clinical neurophysiology.

[18]  G. Barrett,et al.  A paradox in the lateralisation of the visual evoked response , 1976, Nature.

[19]  Herbert Witte,et al.  Training Continuous Trajectories by Means of Dynamic Neural Networks with Time Dependent Weights , 1998, NC.

[20]  M. Jobert,et al.  Processing visual evoked potentials based on matched filtering of single trial responses. , 1996, Neuropsychobiology.

[21]  F. K. Lam,et al.  Visual evoked potential enhancement by an artificial neural network filter. , 1996, Bio-medical materials and engineering.

[22]  M H Cuypers,et al.  Improving the ensemble average of visual evoked potentials. II. Simulations and experiments. , 1995, Technology and health care : official journal of the European Society for Engineering and Medicine.

[23]  F. K. Lam,et al.  Visual evoked potential measurement by adaptive filtering. , 1994, Bio-medical materials and engineering.

[24]  F. Mauguière,et al.  Clinical applications of evoked potentials in neurology , 1982 .

[25]  D Lehmann,et al.  Intracerebral and scalp fields evoked by hemiretinal checkerboard reversal, and modeling of their dipole generators. , 1982, Advances in neurology.