Large-time behavior in non-symmetric Fokker-Planck equations
暂无分享,去创建一个
[1] Thorsten Gerber,et al. Semigroups Of Linear Operators And Applications To Partial Differential Equations , 2016 .
[2] H. Risken. Fokker-Planck Equation , 1984 .
[3] G. Metafune. $L^p$-spectrum of Ornstein-Uhlenbeck operators , 2001 .
[4] B. Opic. Necessary and sufficient conditions for imbeddings in weighted Sobolev spaces , 1989 .
[5] Bohumír Opic,et al. How to define reasonably weighted Sobolev spaces , 1984 .
[6] Axel Klar,et al. Approximate models for stochastic dynamic systems with velocities on the sphere and associated Fokker--Planck equations , 2014 .
[7] R. Nagel,et al. One-parameter semigroups for linear evolution equations , 1999 .
[8] F. Nier,et al. Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians , 2005 .
[9] Amnon Pazy,et al. Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.
[10] S. Lee,et al. Numerical Analysis of Electronic Transport Characteristics in Dielectrics Irradiated by Ultrashort Pulsed Laser Using the Nonlocal Fokker-Planck Equation , 2005 .
[11] A. Arnold,et al. The Wigner-Fokker-Planck equation: Stationary states and large-time behavior , 2007, 0707.2445.
[12] L. Hörmander. Hypoelliptic second order differential equations , 1967 .
[13] A. Arnold,et al. Spectral Analysis and Long-Time Behaviour of a Fokker-Planck Equation with a Non-Local Perturbation , 2012, 1207.5686.
[14] J. Elgin. The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .
[15] Fabrice Baudoin,et al. Bakry-Emery meet Villani , 2013, 1308.4938.
[16] Ansgar Jüngel,et al. Entropy Dissipation Methods for Degenerate ParabolicProblems and Generalized Sobolev Inequalities , 2001 .
[17] Ansgar Jüngel,et al. Entropies and Equilibria of Many-Particle Systems: An Essay on Recent Research , 2004 .
[18] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[19] Lorenzo Pareschi,et al. Solving the Boltzmann Equation in N log2N , 2006, SIAM J. Sci. Comput..
[20] Diego Pallara,et al. Spectrum of Ornstein-Uhlenbeck Operators in Lp Spaces with Respect to Invariant Measures , 2002 .
[21] Anton Arnold,et al. Refined long-time asymptotics for some polymeric fluid flow models , 2010 .
[22] Qiangchang Ju,et al. Large-time behavior of non-symmetric Fokker-Planck type equations , 2008 .
[23] F. Hérau,et al. Isotropic Hypoellipticity and Trend to Equilibrium for the Fokker-Planck Equation with a High-Degree Potential , 2004 .
[24] D. Arnold,et al. Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.
[25] C. Villani,et al. On the trend to global equilibrium in spatially inhomogeneous entropy‐dissipating systems: The linear Fokker‐Planck equation , 2001 .
[26] C. Mouhot,et al. HYPOCOERCIVITY FOR LINEAR KINETIC EQUATIONS CONSERVING MASS , 2010, 1005.1495.
[27] C. Hill. A Sharp Maximum Principle for Degenerate Elliptic-Parabolic Equations , 1970 .
[28] Anton Arnold,et al. Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift , 2014, 1409.5425.
[29] F. Kretzschmann. R. J. Taylor: Food Additives. (The Institution of Environmental Sciences. Series) 126 Seiten, 5 Tab., 73 Lit John Wiley&Sons, Chichester‐New York‐Brisbane‐Toronto 1980. Preis: 4.75 £ , 1983 .
[30] C. Villani. Chapter 2 – A Review of Mathematical Topics in Collisional Kinetic Theory , 2002 .
[31] Global Stability of Vortex Solutions of the Two-Dimensional Navier-Stokes Equation , 2004, math/0402449.
[32] M. Reed,et al. Methods of Modern Mathematical Physics. 2. Fourier Analysis, Self-adjointness , 1975 .
[33] Pierre Bernard,et al. Lectures on probability theory , 1994 .
[34] Ivan Gentil,et al. Phi-entropy inequalities for diffusion semigroups , 2008, 0812.0800.
[35] Angus E. Taylor. Introduction to functional analysis , 1959 .
[36] A. Arnold,et al. On generalized Csiszár-Kullback inequalities , 2000 .
[37] F. Vasilescu,et al. INVARIANT SUBSPACES FOR SOME FAMILIES OF UNBOUNDED SUBNORMAL OPERATORS , 2003, Glasgow Mathematical Journal.
[38] Tosio Kato. Perturbation theory for linear operators , 1966 .
[39] Giuseppe Toscani,et al. ON CONVEX SOBOLEV INEQUALITIES AND THE RATE OF CONVERGENCE TO EQUILIBRIUM FOR FOKKER-PLANCK TYPE EQUATIONS , 2001 .
[40] H. Risken. The Fokker-Planck equation : methods of solution and applications , 1985 .
[41] Martin Costabel,et al. On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains , 2008, 0808.2614.
[42] M. Émery,et al. Hypercontractivité de semi-groupes de diffusion , 1984 .