Large-time behavior in non-symmetric Fokker-Planck equations

We consider three classes of linear non-symmetric Fokker-Planck equations having a unique steady state and establish exponential convergence of solutions towards the steady state with explicit (estimates of) decay rates. First, "hypocoercive" Fokker-Planck equations are degenerate parabolic equations such that the entropy method to study large-time behavior of solutions has to be modified. We review a recent modified entropy method (for non-symmetric Fokker-Planck equations with drift terms that are linear in the position variable). Second, kinetic Fokker-Planck equations with non-quadratic potentials are another example of non-symmetric Fokker-Planck equations. Their drift term is nonlinear in the position variable. In case of potentials with bounded second-order derivatives, the modified entropy method allows to prove exponential convergence of solutions to the steady state. In this application of the modified entropy method symmetric positive definite matrices solving a matrix inequality are needed. We determine all such matrices achieving the optimal decay rate in the modified entropy method. In this way we prove the optimality of previous results. Third, we discuss the spectral properties of Fokker-Planck operators perturbed with convolution operators. For the corresponding Fokker-Planck equation we show existence and uniqueness of a stationary solution. Then, exponential convergence of all solutions towards the stationary solution is proven with an uniform rate.

[1]  Thorsten Gerber,et al.  Semigroups Of Linear Operators And Applications To Partial Differential Equations , 2016 .

[2]  H. Risken Fokker-Planck Equation , 1984 .

[3]  G. Metafune $L^p$-spectrum of Ornstein-Uhlenbeck operators , 2001 .

[4]  B. Opic Necessary and sufficient conditions for imbeddings in weighted Sobolev spaces , 1989 .

[5]  Bohumír Opic,et al.  How to define reasonably weighted Sobolev spaces , 1984 .

[6]  Axel Klar,et al.  Approximate models for stochastic dynamic systems with velocities on the sphere and associated Fokker--Planck equations , 2014 .

[7]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[8]  F. Nier,et al.  Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians , 2005 .

[9]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[10]  S. Lee,et al.  Numerical Analysis of Electronic Transport Characteristics in Dielectrics Irradiated by Ultrashort Pulsed Laser Using the Nonlocal Fokker-Planck Equation , 2005 .

[11]  A. Arnold,et al.  The Wigner-Fokker-Planck equation: Stationary states and large-time behavior , 2007, 0707.2445.

[12]  L. Hörmander Hypoelliptic second order differential equations , 1967 .

[13]  A. Arnold,et al.  Spectral Analysis and Long-Time Behaviour of a Fokker-Planck Equation with a Non-Local Perturbation , 2012, 1207.5686.

[14]  J. Elgin The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .

[15]  Fabrice Baudoin,et al.  Bakry-Emery meet Villani , 2013, 1308.4938.

[16]  Ansgar Jüngel,et al.  Entropy Dissipation Methods for Degenerate ParabolicProblems and Generalized Sobolev Inequalities , 2001 .

[17]  Ansgar Jüngel,et al.  Entropies and Equilibria of Many-Particle Systems: An Essay on Recent Research , 2004 .

[18]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[19]  Lorenzo Pareschi,et al.  Solving the Boltzmann Equation in N log2N , 2006, SIAM J. Sci. Comput..

[20]  Diego Pallara,et al.  Spectrum of Ornstein-Uhlenbeck Operators in Lp Spaces with Respect to Invariant Measures , 2002 .

[21]  Anton Arnold,et al.  Refined long-time asymptotics for some polymeric fluid flow models , 2010 .

[22]  Qiangchang Ju,et al.  Large-time behavior of non-symmetric Fokker-Planck type equations , 2008 .

[23]  F. Hérau,et al.  Isotropic Hypoellipticity and Trend to Equilibrium for the Fokker-Planck Equation with a High-Degree Potential , 2004 .

[24]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[25]  C. Villani,et al.  On the trend to global equilibrium in spatially inhomogeneous entropy‐dissipating systems: The linear Fokker‐Planck equation , 2001 .

[26]  C. Mouhot,et al.  HYPOCOERCIVITY FOR LINEAR KINETIC EQUATIONS CONSERVING MASS , 2010, 1005.1495.

[27]  C. Hill A Sharp Maximum Principle for Degenerate Elliptic-Parabolic Equations , 1970 .

[28]  Anton Arnold,et al.  Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift , 2014, 1409.5425.

[29]  F. Kretzschmann R. J. Taylor: Food Additives. (The Institution of Environmental Sciences. Series) 126 Seiten, 5 Tab., 73 Lit John Wiley&Sons, Chichester‐New York‐Brisbane‐Toronto 1980. Preis: 4.75 £ , 1983 .

[30]  C. Villani Chapter 2 – A Review of Mathematical Topics in Collisional Kinetic Theory , 2002 .

[31]  Global Stability of Vortex Solutions of the Two-Dimensional Navier-Stokes Equation , 2004, math/0402449.

[32]  M. Reed,et al.  Methods of Modern Mathematical Physics. 2. Fourier Analysis, Self-adjointness , 1975 .

[33]  Pierre Bernard,et al.  Lectures on probability theory , 1994 .

[34]  Ivan Gentil,et al.  Phi-entropy inequalities for diffusion semigroups , 2008, 0812.0800.

[35]  Angus E. Taylor Introduction to functional analysis , 1959 .

[36]  A. Arnold,et al.  On generalized Csiszár-Kullback inequalities , 2000 .

[37]  F. Vasilescu,et al.  INVARIANT SUBSPACES FOR SOME FAMILIES OF UNBOUNDED SUBNORMAL OPERATORS , 2003, Glasgow Mathematical Journal.

[38]  Tosio Kato Perturbation theory for linear operators , 1966 .

[39]  Giuseppe Toscani,et al.  ON CONVEX SOBOLEV INEQUALITIES AND THE RATE OF CONVERGENCE TO EQUILIBRIUM FOR FOKKER-PLANCK TYPE EQUATIONS , 2001 .

[40]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[41]  Martin Costabel,et al.  On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains , 2008, 0808.2614.

[42]  M. Émery,et al.  Hypercontractivité de semi-groupes de diffusion , 1984 .