Dual electrochromic film based on WO3/polyaniline core/shell nanowire array

Abstract The WO 3 /PANI core/shell nanowire array is prepared by the combination of solvothermal and electropolymerization methods. The core/shell nanowire array film shows remarkable enhancement of the electrochromic properties. In particular, a significant optical modulation (59% at 700 nm), fast switching speed, high coloration efficiency (86.3 cm 2  C −1 at 700 nm) and excellent cycling stability are achieved for the core/shell nanowire array film. The improved electrochromic properties are mainly attributed to the formation of the donor–acceptor system, and the porous space among the nanowires, which can make fast ion diffusion and provide larger surface area for charge-transfer reactions. The data indicate great promise for the WO 3 /PANI core/shell nanowire array as a potential multicolor electrochromic material.

[1]  Bobby To,et al.  Crystalline WO3 Nanoparticles for Highly Improved Electrochromic Applications , 2006 .

[2]  Xiao Wei Sun,et al.  Morphology-tailored synthesis of tungsten trioxide (hydrate) thin films and their photocatalytic properties. , 2011, ACS applied materials & interfaces.

[3]  Guofa Cai,et al.  Multicolor Electrochromic Film Based on TiO2@Polyaniline Core/Shell Nanorod Array , 2013 .

[4]  C. Lampert Chromogenic smart materials , 2004 .

[5]  J. Reynolds,et al.  The donor-acceptor approach allows a black-to-transmissive switching polymeric electrochrome. , 2008, Nature materials.

[6]  C. Labrugère,et al.  Synthesis and characterization of WO3 thin films by surfactant assisted spray pyrolysis for electrochromic applications , 2013 .

[7]  J. Tu,et al.  Enhanced electrochromic performance of macroporous WO3 films formed by anodic oxidation of DC-sputtered tungsten layers , 2010 .

[8]  Hongzhi Wang,et al.  Hierarchical NiO microflake films with high coloration efficiency, cyclic stability and low power consumption for applications in a complementary electrochromic device. , 2013, Nanoscale.

[9]  J. Tu,et al.  Multicolor and fast electrochromism of nanoporous NiO/poly(3,4-ethylenedioxythiophene) composite thin film , 2009 .

[10]  C. Lampert Smart switchable glazing for solar energy and daylight control , 1998 .

[11]  J. Stejskal,et al.  Structure and stability of thin polyaniline films deposited in situ on silicon and gold during precipitation and dispersion polymerization of aniline hydrochloride , 2011 .

[12]  Jaewoon Jung,et al.  One-pot synthesis of hybrid TiO2-polyaniline nanoparticles by self-catalyzed hydroamination and oxidative polymerization from TiO2-methacrylic acid nanoparticles. , 2011, Chemical communications.

[13]  S. Zhuiykov,et al.  The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties. , 2012, Nanoscale.

[14]  J. Zemek,et al.  In situ polymerized polyaniline films: The top and the bottom , 2012 .

[15]  Guofa Cai,et al.  One-step fabrication of nanostructured NiO films from deep eutectic solvent with enhanced electrochromic performance , 2013 .

[16]  M. Yagi,et al.  Electrochromic hysteresis performance of a prussian blue film arising from electron-transfer control by a tris(2,2'-bipyridine)ruthenium(II)-doped WO(3) film as studied by a spectrocyclic voltammetry technique. , 2006, Chemistry.

[17]  Xiuli Wang,et al.  Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance , 2011 .

[18]  Zhanhu Guo,et al.  Electrochromic Poly(DNTD)/WO3 Nanocomposite Films via Electorpolymerization , 2012 .

[19]  J. Tu,et al.  Electrochromic behavior of WO3 nanotree films prepared by hydrothermal oxidation , 2011 .

[20]  C. Lampert Large-Area Smart Glass And Integrated Photovoltaics , 2003 .

[21]  J. Tu,et al.  Multicolor electrochromic polyaniline–WO3 hybrid thin films: One-pot molecular assembling synthesis , 2011 .

[22]  Hongwen Zhang,et al.  Layer-controlled synthesis of WO₃ ordered nanoporous films for optimum electrochromic application. , 2013, Nanoscale.

[23]  Jun Zhang,et al.  Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition , 2008 .

[24]  C. Lampert,et al.  Electrochromic characterization of sol-gel deposited coatings , 1998 .

[25]  G. Wallace,et al.  Use of Ionic Liquids for π-Conjugated Polymer Electrochemical Devices , 2002, Science.

[26]  Jun Zhang,et al.  An efficient route to a porous NiO/reduced graphene oxide hybrid film with highly improved electrochromic properties. , 2012, Nanoscale.

[27]  C. Granqvist,et al.  Electrochromism in sputter deposited nickel-containing tungsten oxide films , 2012 .

[28]  A. L. Dyer,et al.  Navigating the Color Palette of Solution-Processable Electrochromic Polymers† , 2011 .

[29]  Guofa Cai,et al.  Hierarchical structure Ti-doped WO3 film with improved electrochromism in visible-infrared region , 2013 .

[30]  Giacomo Bergamini,et al.  Polysulfurated pyrene-cored dendrimers: luminescent and electrochromic properties. , 2008, Chemistry.

[31]  C. Visy,et al.  Conducting Polymer-Based Electrode with Magnetic Behavior: Electrochemical Synthesis of Poly(3-thiophene-acetic-acid)/Magnetite Nanocomposite Thin Layers , 2009 .

[32]  J. Nedeljković,et al.  Ferromagnetic polyaniline/TiO2 nanocomposites , 2012 .

[33]  V. Ahmadi,et al.  Fast switching and high contrast electrochromic device based on PEDOT nanotube grown on ZnO nanowires , 2013 .

[34]  S. A. Agnihotry,et al.  Electrodeposited tungsten oxide films: annealing effects on structure and electrochromic performance , 2004 .

[35]  Zhanhu Guo,et al.  Polyaniline-tungsten oxide metacomposites with tunable electronic properties , 2011 .

[36]  C. Granqvist,et al.  Advances in chromogenic materials and devices , 2010 .

[37]  Bernard Desbat,et al.  Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates , 1987 .

[38]  M. Yagi,et al.  Preparation and multicolor electrochromic performance of a WO3/tris(2,2'-bipyridine)ruthenium(II)/polymer hybrid film. , 2005, Chemistry.

[39]  K. Landfester,et al.  The Longest beta-Unsubstituted Oligothiophenes and Their Self-Assembly in Solution , 2010 .

[40]  Wje Waldo Beek,et al.  Hybrid Solar Cells from Regioregular Polythiophene and ZnO Nanoparticles , 2006 .

[41]  M. Higuchi,et al.  Multi-colour electrochromic properties of Fe/Ru-based bimetallo-supramolecular polymers , 2013 .

[42]  P. Patil,et al.  Titanium doping effects in electrochromic pulsed spray pyrolysed WO3 thin films , 2008 .

[43]  Jin-Han Lin,et al.  Efficient electrochromic properties of high-density and large-area arrays of one-dimensional NiO nanorods , 2013 .

[44]  Guofa Cai,et al.  Ultra-thin WO3 nanorod embedded polyaniline composite thin film: Synthesis and electrochromic characteristics , 2013 .

[45]  P. Salvador,et al.  Photoelectrochemical behavior of nanostructured WO3 thin-film electrodes: The oxidation of formic acid. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[46]  Zhiping Luo,et al.  Electropolymerized Polyaniline Stabilized Tungsten Oxide Nanocomposite Films: Electrochromic Behavior and Electrochemical Energy Storage , 2012 .

[47]  K. Rajeshwar,et al.  Electrodeposited Polyaniline in a Nanoporous WO3 Matrix: An Organic/Inorganic Hybrid Exhibiting Both p- and n-Type Photoelectrochemical Activity , 2012 .

[48]  Yongxiang Li,et al.  Using room temperature ionic liquid to fabricate PEDOT/TiO2 nanocomposite electrode-based electrochromic devices with enhanced long-term stability , 2008 .

[49]  C. Lampert,et al.  Cross-sectional high-resolution transmission electron microscopy of the microstructure of electrochromic nickel oxide , 2000 .

[50]  K. Ho,et al.  Design equations for complementary electrochromic devices: application to the tungsten oxide–Prussian blue system , 2001 .

[51]  Jiahua Zhu,et al.  Enhanced Electrical Switching and Electrochromic Properties of Poly(p‐phenylenebenzobisthiazole) Thin Films Embedded with Nano‐WO3 , 2010 .

[52]  Claes-Göran Granqvist,et al.  Electrochromic coatings and devices: survey of some recent advances , 2003 .

[53]  C. Constantino,et al.  Thermal inkjet printing of polyaniline on paper , 2012 .

[54]  Michael Grätzel,et al.  Materials science: Ultrafast colour displays , 2001, Nature.