Superionics: crystal structures and conduction processes

Superionic conductors are compounds that exhibit exceptionally high values of ionic conductivity within the solid state. Indeed, their conductivities often reach values of the order of 1 Ω−1 cm−1, which are comparable to those observed in the molten state. Following Faraday's first observation of high ionic conductivity within the solids β-PbF2 and Ag2S in 1836, a fundamental understanding of the nature of the superionic state has provided one of the major challenges in the field of condensed matter science. However, experimental and theoretical approaches to their study are often made difficult by the extensive dynamic structural disorder which characterizes superionic conduction and the inapplicability of many of the commonly used approximations in solid state physics. Nevertheless, a clearer picture of the nature of the superionic state at the ionic level has emerged within the past few decades. Many different techniques have contributed to these advances, but the most significant insights have been provided by neutron scattering experiments and molecular dynamics simulations. This review will summarize the state of current knowledge concerning the crystal structures and conduction processes of superionic conductors, beginning with a comparison of the behaviour of two of the most widely studied binary compounds, AgI and β-PbF2. Each can be considered a parent of two larger families of highly conducting compounds which are related by either chemical or structural means. These include perovskite-structured oxides and Li+ containing spinel-structured compounds, which have important commercial applications in fuel cells and lightweight batteries, respectively. In parallel with these discussions, the relative importance of factors such as bonding character and the properties of the mobile and immobile ions (charge, size, polarizability, etc) in promoting the extensive lattice disorder which characterizes superionic behaviour will be assessed and the possibilities for predicting a priori which compounds will display high ionic conductivity discussed.

[1]  C. H. Perry,et al.  Quasi-elastic scattering due to fast oxygen diffuson in yttria stabilized zirconia , 1980 .

[2]  M. Jansen,et al.  Über Na3PO4: Versuche zur Reindarstellung, Kristallstruktur der Hochtemperaturform [1] , 1980 .

[3]  Ronald L. Cook,et al.  On the systematic selection of perovskite solid electrolytes for intermediate temperature fuel cells , 1991 .

[4]  P. Jacobs,et al.  Ionic conductivity of pure and doped sodium chloride crystals , 1988 .

[5]  C. Catlow Can the mechanisms of ion transport in SSIs be determined by computer modelling , 1992 .

[6]  M. Gillan,et al.  Shell-model molecular dynamics simulation of superionic conduction in CaF2 , 1993 .

[7]  A. Stacy,et al.  Local structure and oxide-ion motion in defective perovskites , 1994 .

[8]  C. Cramer,et al.  Ionic motion in materials with disordered structures: conductivity spectra and the concept of mismatch and relaxation , 2002 .

[9]  E. Morán,et al.  Lithium-ion conductivity in the novel La1/3−xLi3xNbO3 solid solution with perovskite-related structure , 1999 .

[10]  G. Tendeloo,et al.  From Bi4V2O11 to Bi4V2O10.66: the VV–VIV transformation in the aurivillius-type framework , 1996 .

[11]  V. M. Goldschmidt,et al.  Die Gesetze der Krystallochemie , 1926, Naturwissenschaften.

[12]  A. Burggraaf,et al.  Oxygen ion and mixed conductivity in compounds with the fluorite and pyrochlore structure , 1983 .

[13]  R. Mcgreevy,et al.  Reverse Monte Carlo modelling , 2001 .

[14]  Y. Takeda,et al.  Ionic Conductivity and Phase Transition of the Spinel System Li2 − 2x M 1 + x Cl4 ( M = Mg , Mn , Cd ) , 1984 .

[15]  R. Alben,et al.  The Raman spectra of the superionic conductor CuI in its three phases , 1977 .

[16]  M. Pouchard,et al.  Neutron diffraction investigation of the cationic distribution in the structure of the spinel-type solid solutions Li2−2xM1+xCl4(M=Mg, V): correlation with the ionic conductivity and NMR data , 1985 .

[17]  A. Jacobson,et al.  A powder neutron diffraction investigation of the nuclear and magnetic structure of Sr2Fe2O5 , 1975 .

[18]  Pannetier,et al.  Multiple sites and mobility in ionic conductors by NMR dipolar transient effects. , 1986, Physical review. B, Condensed matter.

[19]  J. Strähle,et al.  The crystal structure of tveitite, an ordered yttrofluorite mineral , 1982 .

[20]  A. Mackay Two-dimensional space groups with sevenfold symmetry , 1986 .

[21]  J. Boivin Structural and electrochemical features of fast oxide ion conductors , 2001 .

[22]  Shaorong Wang,et al.  Observation of Two Kinds of Structural Phase Transitions in the Ba2In2 O 5 System , 2002 .

[23]  W. Schommers Correlations in the Motion of Particles inα-AgI: A Molecular-Dynamics Study , 1977 .

[24]  M. Balasubramanian,et al.  IN SITU INVESTIGATION OF PHASE TRANSITIONS OF LI1+YMN2O4 SPINEL DURING LI-ION EXTRACTION AND INSERTION , 2002 .

[25]  R. Mcgreevy,et al.  A molecular dynamics study of ionic conduction in CuI. II. Local ionic motion and conduction mechanisms , 1996 .

[26]  J. Kilner The calculation of defect energies in the perovskite fluoride KMnF3 , 1981 .

[27]  R. Grimes,et al.  Defect cluster formation in M2O3-doped cubic ZrO2 , 2000 .

[28]  P. Bruce,et al.  An Oxygen-Rich Pyrochlore with Fluorite Composition , 1999 .

[29]  S. C. Parker,et al.  Molecular dynamics simulation of fluoride-perovskites , 1992 .

[30]  R. Mcgreevy,et al.  Structure and ionic conduction in CuI: diffuse neutron scattering and RMC modelling , 1998 .

[31]  P. Hagenmuller,et al.  Sur de nouveaux conducteurs anioniques de hautes performances , 1976 .

[32]  S. Hull,et al.  Neutron powder diffusion study of the fast-ion transition and specific heat anomaly in beta -lead fluoride , 1991 .

[33]  M. Islam,et al.  Computer modelling of defects and transport in perovskite oxides , 2002 .

[34]  S. Hull,et al.  A low temperature structural phase transition in CsPbF3 , 2001 .

[35]  R. Stevens,et al.  Applications of Zirconia Ceramics , 1996 .

[36]  C. Howard,et al.  The orthorhombic and rhombohedral phases of - a neutron powder diffraction study , 1999 .

[37]  M. Dissanayake,et al.  Ionic conductivity of solid solutions of α-Li2SO4 with Li2WO4: Strong evidence for the paddle wheel mechanism of ion transport , 1991 .

[38]  S. Miyatani Ionic Conductivity in Silver Chalcogenides , 1981 .

[39]  F. Haldane The soliton wavenumber cut-off and the excitation spectrum of the 1-D Heisenberg ferromagnet in the semiclassical continuum approximation , 1982 .

[40]  T. Row,et al.  Crystal structure of ferroelectric Bi2VO5.5 , 1997 .

[41]  M. Crosnier-Lopez,et al.  Structural and Microstructural Studies of the Series La2/3−xLi3x□1/3−2xTiO3 , 1996 .

[42]  J. Réau,et al.  Short-range order and F− ion diffusion inside the Pb1 − xAlxF2 + x solid solution Part I: 19F-NMR investigation , 1997 .

[43]  P. Jacobs,et al.  Computational simulations of δ-Bi2O3. I. Disorder , 1987 .

[44]  Michael M. Thackeray,et al.  Spinel Electrodes for Lithium Batteries , 2004 .

[45]  G. Burley The `memory effect' in silver iodide , 1967 .

[46]  J. Rino,et al.  Structural and dynamical correlations in Ag2Se: A molecular dynamics study of superionic and molten phases , 1988 .

[47]  G. J. Hyland,et al.  Empirical confirmation of a bredig transition in UO2 , 1985 .

[48]  M. Sakata,et al.  The interpretation of neutron powder diffraction measurements on α‐AgI , 1979 .

[49]  A. Cheetham,et al.  THE STRUCTURES OF YTTRIUM AND BISMUTH TRIFLUORIDES BY NEUTRON DIFFRACTION , 1974 .

[50]  V. Trnovcová,et al.  Structural aspects of fast ionic conductivity of rare earth fluorides , 2003 .

[51]  P. Woodward Octahedral Tilting in Perovskites. I. Geometrical Considerations , 1997 .

[52]  K. Knight,et al.  Crystal structure and paramagnetic behaviour of , 1997 .

[53]  H. G. Scott,et al.  Phase relationships in the zirconia-yttria system , 1975 .

[54]  Bryan C. Chakoumakos,et al.  Systematics of the pyrochlore structure type, ideal A2B2X6Y , 1984 .

[55]  J. Goodenough,et al.  Superior Perovskite Oxide‐Ion Conductor; Strontium‐ and Magnesium‐Doped LaGaO3: II, ac Impedance Spectroscopy , 2005 .

[56]  P. Fischer,et al.  Neutron poweder diffraction investigation of γ-and β-copper chloride in the temperature range 8–686 K , 1988 .

[57]  Harry L. Tuller,et al.  Ionic conduction in nanocrystalline materials , 2000 .

[58]  S. Loridant,et al.  Phase transitions in BaCeO3: neutron diffraction and Raman studies , 1999 .

[59]  G. D. Price,et al.  Simulation of the pre-melting behaviour of MgSiO3 perovskite at high pressures and temperatures , 1991, Nature.

[60]  B. Hyde,et al.  Non-bonded interactions and the crystal chemistry of tetrahedral structures related to the wurtzite type (B4) , 1978 .

[61]  P. Hagenmuller,et al.  Synthese et etude des proprietes de conductivite ionique des phases appartenant aux systemes KBiF4 BiF3 et RbBiF4 BiF3 , 1980 .

[62]  K. Knight,et al.  Perovskite solid electrolytes: Structure, transport properties and fuel cell applications , 1995 .

[63]  R. Cava,et al.  Diffuse-X-Ray-Scattering Study of the Fast-Ion Conductor β-Ag_{2}S , 1980 .

[64]  H. Lutz,et al.  Phase relationships of lithium, manganese, and chromium(III) chlorides : new lithium ion conducting materials , 1993 .

[65]  K. Knight,et al.  Ionic conductivity of gadolinium-doped barium cerate perovskites , 1989 .

[66]  R. McMullan,et al.  A single-crystal neutron diffraction study of the distribution and thermal motion of silver ions in alpha- and beta- Ag3SI , 1986 .

[67]  P. Conflant,et al.  High oxygen ion conduction in a bismuth oxide - cadmium oxide phase: Conductivity and transport number measurements ; Structural investigations , 1986 .

[68]  A. Lundén Enhancement of cation mobility in some sulphate phases due to a paddle-wheel mechanism , 1988 .

[69]  J. Goodenough,et al.  Structure refinement of the spinel-related phases Li2Mn2O4 and Li0.2Mn2O4 , 1987 .

[70]  O. Bohnké,et al.  In search of the cubic phase of the Li+ ion-conducting perovskite La2/3−xLi3xTiO3: structure and properties of quenched and in situ heated samples , 2002 .

[71]  S. C. Parker,et al.  A molecular dynamics simulation of the effect of high pressure on fast-ion conduction in a MgSiO3-perovskite analogue; KCaF3 , 1995 .

[72]  S. Hull,et al.  Structural characterization of further high temperature superionic phases of Ag2HgI4 and Cu2HgI4 , 2001 .

[73]  H. Verweij,et al.  Molecular dynamics simulations of yttria-stabilized zirconia , 1995 .

[74]  P. Leung,et al.  Time‐of‐flight neutron diffraction study of a single crystal of yttria‐stabilized zirconia, Zr(Y)O1.862, at high temperature and in an applied electrical field , 1984 .

[75]  Matsushima,et al.  Synchrotron radiation study of yttria-stabilized zirconia, Zr0.758Y0.242O1.879. , 1999, Acta crystallographica. Section B, Structural science.

[76]  W. Klement Pressure dependence of the diffuse transition temperature of PbF2 from differential thermal analysis in quasi-hydrostatic apparatus , 1976 .

[77]  P. Hagenmuller,et al.  New fluorine ion conductors with tysonite-type structure , 1985 .

[78]  H. D. Lutz,et al.  Mößbauer- und Neutronenbeugungs-Messungen an Li6FeCl8 , 1993 .

[79]  M. Parrinello,et al.  Charge carrier interactions in ionic conductors: A classical molecular-dynamics and Monte Carlo study on AgI , 2000 .

[80]  Kenji Uchino,et al.  X-ray study of the deficient perovskite La23TiO3 , 1974 .

[81]  G. D. Price,et al.  Electrical conductivity of the lower mantle: a molecular dynamics simulation of MgSiO3 perovskite , 1989 .

[82]  Claes G. Granqvist,et al.  Progress in electrochromics: tungsten oxide revisited , 1999 .

[83]  W. Bassett,et al.  Elements, Oxides, and Silicates: High Pressure Phases with Implications for the Earth's Interior , 1986 .

[84]  J. Attfield,et al.  New anion-deficient cubic perovskites: Ba2In1 −xCo1 +xO5 +δ(0 ≤x≤ 0.8) and Ba2 −xLaxCoInO5 +δ(0.2 ≤x≤ 0.8) , 2002 .

[85]  L. Hove Correlations in Space and Time and Born Approximation Scattering in Systems of Interacting Particles , 1954 .

[86]  A. Zawadowski,et al.  Role of the two-roton bound state in neutron scattering on superfluid 4He , 1978 .

[87]  P. Jacobs,et al.  Computational simulation of δ-Bi2O3. II. Charge migration , 1987 .

[88]  F. Ernst,et al.  Origin of diffuse electron scattering in yttria-cubicstabilized zirconia single crystals with 24–32 mol% yttria , 2001 .

[89]  C. Wagner,et al.  Electrical Conductivity Measurements on Cuprous Halides , 1957 .

[90]  T. Gustafsson,et al.  Long-range ordering during delithiation of LiMn2O4 cathode material , 2003 .

[91]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[92]  Peter G. Bruce,et al.  Solid-state chemistry of lithium power sources† , 1997 .

[93]  M. Dissanayake,et al.  Paddle-wheel versus percolation mechanism for cation transport in some sulphate phases , 1992 .

[94]  A. Wright,et al.  The structure of superionic compounds by powder neutron diffraction. I. Cation distribution in α-AgI , 1977 .

[95]  H. Inaba,et al.  Structural consideration on the ionic conductivity of perovskite-type oxides , 1999 .

[96]  W. Jost,et al.  Die Elektronen-Überführungszahlen von regulärem und hexagonalemAgJ. , 1954 .

[97]  A. Privalov,et al.  Ionic motion in the LaF3 superionic conductor studied by 19F NMR with homonuclear decoupling , 1989 .

[98]  M. Itoh,et al.  Lithium Ion Conductivity in a Perovskite Lanthanum Lithium Titanate Single Crystal , 1997 .

[99]  Christopher M Wolverton,et al.  Defect ordering in aliovalently doped cubic zirconia from first principles , 2001 .

[100]  B. Owens,et al.  Twenty year storage test of Ag/RbAg4I5/I2 solid state batteries , 1993 .

[101]  Yvon Laligant,et al.  Designing fast oxide-ion conductors based on La2Mo2O 9 , 2000, Nature.

[102]  R. Withers,et al.  The oxygen positional parameter in pyrochlores and its dependence on disorder. , 2002 .

[103]  H. Scott The yttria–zirconia δ phase , 1977 .

[104]  M. Hervieu,et al.  The Anionic Superconductor Bi3BaO5.5: A bcc Structure Closely Related to the Perovskite. Relationships with Anti α-AgI , 1994 .

[105]  R. Jeanloz,et al.  Laboratory studies of the electrical conductivity of silicate perovskites at high pressures and temperatures , 1990 .

[106]  Collin,et al.  Host lattices and superionic properties in beta - and beta "-alumina. II. Homogeneity ranges and conductivities. , 1986, Physical review. B, Condensed matter.

[107]  A. Hasegawa,et al.  Insight into the origin of superionic conductivity from electronic structure theory , 1998 .

[108]  C. Lucat,et al.  Etude par diffraction de neutrons de la solution solide Pb1−1xThxF2+2x , 1981 .

[109]  S. Hoshino,et al.  Structure and Dynamics of Quenched α-Phase of Superionic Conductor Ag3SI , 1988 .

[110]  M. O'keeffe,et al.  Ionic Conductivity of Yttrium Fluoride and Lutetium Fluoride , 1973, Science.

[111]  S. Hull,et al.  Structural and superionic properties of Ag+-rich ternary phases within the AgI?MI2 systems , 2002 .

[112]  R. Cahn Materials science: A soft superionically conducting lower mantle? , 1984, Nature.

[113]  C. Grey,et al.  Probing the defect structure of anion-excess Ca1-xYxF2+x (x = 0.03-0.32) with high-resolution 19F magic-angle spinning nuclear magnetic resonance spectroscopy , 1998 .

[114]  A. Rhandour,et al.  Static modelling of the fast ion conductors β-KBiF4, and γ-RbBiF4 , 1988 .

[115]  T. Suemoto,et al.  Composition dependence of the ionic diffusion coefficients in yttria-stabilized zirconias , 1986 .

[116]  Michael T. Hutchings,et al.  Investigation of thermally induced anion disorder in fluorites using neutron scattering techniques , 1984 .

[117]  R. Mitchell Perovskites: Modern and Ancient , 2003 .

[118]  Collin,et al.  Host lattices and superionic properties in beta - and beta "-alumina. I. Structures and local correlations. , 1986, Physical review. B, Condensed matter.

[119]  Y. Waseda,et al.  Structural study of superionic phase of AgI , 1979 .

[120]  Michael T. Hutchings,et al.  Investigation of thermally induced Li+ ion disorder in Li2O using neutron diffraction , 1991 .

[121]  M. Goldman,et al.  Spin-Spin Relaxation in LaF 3 , 1966 .

[122]  C. Catlow,et al.  Defects and diffusion in pyrochlore structured oxides , 1998 .

[123]  K. Knight,et al.  The influence of thermal vibrations on the average structure of cubic perovskite: a combined molecular dynamics and neutron diffraction study , 1997 .

[124]  S. Hull,et al.  A powder neutron diffraction study of the pressure-induced phase transitions within silver iodide , 1993 .

[125]  I. R. Mcdonald,et al.  Cation transport in lithium sulphate based crystals , 1995 .

[126]  P. Shlichta A crystallographic search program for oxygen-conducting electrolytes , 1988 .

[127]  S. Hull,et al.  Superionic behaviour in copper (I) iodide at elevated pressures and temperatures , 1998 .

[128]  Zhong Lin Wang,et al.  Local ordering of oxygen vacancies in cubic zirconia (ZrO2) stabilized with yttria (Y2O2) and magnesia (MgO) I. Electron diffuse scattering study , 1996 .

[129]  Gardner,et al.  Structural Evidence for a Fast-Ion Transition in the High-Pressure Rocksalt Phase of Silver Iodide. , 1996, Physical review letters.

[130]  S. Hull,et al.  Superionic behaviour in copper(I) chloride at high pressures and high temperatures , 1996 .

[131]  M. Mori,et al.  Ionic Conductivity and Structure of Double Chloride Li2ZnCl4 in the LiCl–ZnCl2 System , 1989 .

[132]  D. W. Osborne,et al.  Thermodynamics of the lanthanide trifluorides. I. The heat capacity of lanthanum trifluoride, LaF3 from 5 to 350°K and enthalpies from 298 to 1477°K , 1978 .

[133]  Juan J. Carbajo,et al.  A review of the thermophysical properties of MOX and UO , 2001 .

[134]  John B. Goodenough,et al.  Superior Perovskite Oxide‐Ion Conductor; Strontium‐ and Magnesium‐Doped LaGaO3: I, Phase Relationships and Electrical Properties , 2005 .

[135]  C. Catlow,et al.  The structural properties of the oxygen conducting δ phase of Bi2O3 , 1983 .

[136]  K. Ihata,et al.  Structural and dynamical properties of -CuI: a molecular dynamics study , 1997 .

[137]  Chadwick,et al.  Defect structure of doped CaF2 at high temperatures. , 1989, Physical review. B, Condensed matter.

[138]  H. Loye,et al.  Recent developments in oxide ion conductors: Aurivillius phases , 1996 .

[139]  S. Hull,et al.  Determination of the structure of beta -CuI by high-resolution neutron powder diffraction , 1994 .

[140]  W. Hayes Light scattering by superionic conductors , 1982 .

[141]  I. Farnan,et al.  Diffusion and the dynamics of displacive phase transitions in cryolite (Na3AlF6) and chiolite (Na5Al3F14): Multi-nuclear NMR studies , 1994 .

[142]  H. Iwahara Proton conducting ceramics and their applications , 1996 .

[143]  J. Ruvalds,et al.  Dielectric constant and threshold electric field of charge-density-waves with strong impurity pinning , 1984 .

[144]  J. Boyce,et al.  A structural model for superionic conduction , 1978 .

[145]  H. Stokes,et al.  Group-theoretical analysis of octahedral tilting in perovskites , 1998 .

[146]  R. I. Taylor,et al.  Defect structure of fluorite compounds containing excess anions , 1970 .

[147]  A. Nowick,et al.  High-temperature protonic conductors with perovskite-related structures , 1995 .

[148]  K. Clausen,et al.  Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures , 1999 .

[149]  D. Wolf Quasielastic neutron scattering and correlated self-diffusion in crystals , 1977 .

[150]  K. S. Aleksandrov,et al.  Phase transitions in elpasolites (ordered perovskites) , 1998 .

[151]  R. T. Harley,et al.  Studies of effects of trivalent impurity ions on the transition to the superionic state of fluorites , 1981 .

[152]  H. Schulz,et al.  Study of ionic conductors by X-ray and neutron diffraction , 1981 .

[153]  S. Vilminot,et al.  High ionic conductivity in new fluorine compounds of tin II. II. On the binary system PbF2-SnF2 , 1981 .

[154]  J. Maguire,et al.  Oxygen migration in A2B2O7 pyrochlores , 2001 .

[155]  F. M. Gray,et al.  Ionic transport in polymer electrolytes , 1991 .

[156]  O. Joubert,et al.  Crystal structure of low-temperature form of bismuth vanadium oxide determined by rietveld refinement of X-ray and neutron diffraction data (α - Bi4V2O11) , 1994 .

[157]  T. Minami,et al.  Low-temperature positional ordering of silver ions in α-AgI crystallites dispersed in glass matrix , 1993 .

[158]  P. Bruce,et al.  Tetragonal-packed crystal structures , 1982 .

[159]  Shiyan Li,et al.  Magnetotransport and the Shubnikov-de Haas effect in quasi-two-dimensional purple bronze TlMo6O17 , 2001 .

[160]  B. Mellander,et al.  Electrical conductivity and activation volume of the solid electrolyte phaseα-AgI and the high-pressure phase fcc AgI , 1982 .

[161]  O. Lebedev,et al.  HREM study of compounds in the Bi-rich part of the Ba-Bi-O system , 2002 .

[162]  M. Salamon Physics of superionic conductors , 1979 .

[163]  M. Oliveria,et al.  Single crystal neutron diffraction analysis of the cation distribution in the high-temperature phases α-Cu2−xS, α-Cu2−xSe, and α-Ag2Se , 1988 .

[164]  H. Kawai,et al.  Lithium ion conductivity of polycrystalline perovskite La0.67−xLi3xTiO3 with ordered and disordered arrangements of the A-site ions , 1998 .

[165]  R. Mcgreevy,et al.  Structure and fast-ion conduction in α-AgI , 1993 .

[166]  R. Collongues,et al.  Etude de la transformation ordre-desordre de la structure fluorite a la structure pyrochlore pour des phases (1−x) ZrO2 x Ln2O3 , 1974 .

[167]  P. Vashishta,et al.  Ionic motion in. cap alpha. -AgI , 1978 .

[168]  J. Schoonman Nanostructured materials in solid state ionics , 2000 .

[169]  P. Hagenmuller,et al.  Synthese et etude de la conductivite anionique de nouveaux electrolytes MBiF4 (M K, Rb, Tl) , 1977 .

[170]  Armel Le Bail,et al.  Short-range order in the anion-excess fluorite-relatedCa0.68Ln0.32F2.32solid solutions: EXAFS study of theLn3+environment , 1990 .

[171]  H. Yokokawa,et al.  Materials and Characterization of Solid Oxide Fuel Cell , 1996 .

[172]  A. Donato A critical review of Li2O ceramic breeder material properties correlations and data , 1998 .

[173]  S. Gronowitz,et al.  Phase Transitions and Structure of the High-Temperature Phases of some Compounds of the Cryolite Family. , 1965 .

[174]  S. Hull,et al.  Superionic phases in the (PbF2)1-x-(MF)x, M = K, Rb and Cs, systems , 1999 .

[175]  H. Ogawa,et al.  Simulated diffusion of oxide ions in YO1.5–ZrO2 at high temperature , 2000 .

[176]  Y. Asadov,et al.  Structural phase transitions in Cu2−xTe crystals (x=0.00, 0.10, 0.15, 0.20, 0.25) , 1992 .

[177]  D. Wilmer,et al.  Ion conducting rotor phases—new insights from quasielastic neutron scattering , 2001 .

[178]  J. Grins,et al.  Crystal growth and structural investigations of the oxygen ion conductor BaBi3O5.5 , 2000 .

[179]  J. Kuwano,et al.  Fast amperometric response of ambient temperature oxygen sensor based on PbSnF4; iron (II) phthalcyanine-based sensing electrodes containing carbon microbeads , 1994 .

[180]  A. M. Glazer Perovskites modern and ancient. By Roger H. Mitchell. Thunder Bay, Ontario: Almaz Press, 2002. Price USD 70.00. ISBN 0-9689411-0-9 , 2003 .

[181]  A. Schiraldi,et al.  Ag3SBr and Ag3SI: Ionic Conductivity of Their Modifications in the T Range 93—573 K , 1979 .

[182]  M. Kunz,et al.  Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions , 2000 .

[183]  F. Krok,et al.  Defect structure of quenched γ-BICOVOX by combined X-ray and neutron powder diffraction , 1996 .

[184]  K. Knight,et al.  A high-resolution neutron powder diffraction study of neodymium doping in barium cerate , 1995 .

[185]  P. Strobel,et al.  Structure and conductivity of Cu and Ni-substituted Bi4V2O11 compounds , 1994 .

[186]  R. J. Hill,et al.  Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction , 1988 .

[187]  Tatsumi Ishihara,et al.  Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor , 1994 .

[188]  Robin W. Grimes,et al.  Disorder in Pyrochlore Oxides , 2004 .

[189]  N. Minh Ceramic Fuel Cells , 1993 .

[190]  N. Medvedeva,et al.  Electronic structure and chemical bonding in δ-Bi2O3 , 1996 .

[191]  J. Filho,et al.  Evidence for a diffuse transition in lead chloride , 1979 .

[192]  P. Bruce Rechargable lithium batteries , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[193]  M. Elcombe,et al.  A neutron scattering investigation of cubic stabilised zirconia (CSZ). I: The average structure of Y-CSZ , 1996 .

[194]  A. Heuer,et al.  Precipitation and ordering in calcia- and yttria-stabilized zirconia , 1980 .

[195]  S. N. Ruddlesden,et al.  The compound Sr3Ti2O7 and its structure , 1958 .

[196]  G. Lucazeau,et al.  Raman scattering study of phase transitions in undoped and rare earth ion‐doped BaCeO3 and SrCeO3 , 1993 .

[197]  B. Frit,et al.  Defect structure of anion-excess fluorite-related Ca1−xYxF2+x solid solutions , 1983 .

[198]  K. Knight,et al.  Crystal structures of gadolinium- and yttrium-doped barium cerate , 1992 .

[199]  S. Kashida,et al.  X-ray study of the cation distribution in Cu2Se, Cu1.8Se and Cu1.8S; analysis by the maximum entropy method , 1991 .

[200]  P. Battle,et al.  Structural and dynamical studies of δ-Bi2O3 oxide ion conductors: I. The structure of (Bi2O3)1−x(Y2O3)x as a function of x and temperature , 1986 .

[201]  Xiaoyun Li,et al.  Molecular dynamics simulations of yttrium-stabilized zirconia , 1995 .

[202]  M. Parrinello,et al.  The conductivity anomaly in PbF2: a numerical investigation by classical MD and MC simulations , 2000 .

[203]  M. Wakihara,et al.  Ionic conduction of lithium for Perovskite-type compounds, LixLa(1−x)/3NbO3 and (Li0.25La0.25)1−xSr0.5xNbO3 , 1998 .

[204]  R. Mcgreevy,et al.  Diffuse neutron scattering from an in situ grown α-AgI single crystal , 1994 .

[205]  B. Reuter,et al.  Silbersulfidbromid Ag3SBr und Silbersulfidjodid Ag3SJ. II. Die Kristallstrukturen von Ag3SBr, β- und α-Ag3SJ , 1965 .

[206]  R. Jeanloz,et al.  Phases and electrical conductivity of a hydrous silicate assemblage at lower-mantle conditions , 1991, Nature.

[207]  S. Hull,et al.  Coherent diffuse neutron scattering from the anion-excess fluorite (Sr,Y)Cl2.03 , 1992 .

[208]  R. J. Elliott,et al.  Neutron Scattering from a Liquid on a Jump Diffusion Model , 1961 .

[209]  G. Burley,et al.  Structure of Hexagonal Silver Iodide , 1963 .

[210]  C. Catlow,et al.  Defect structures and migration mechanisms in oxide pyrochlores , 1985 .

[211]  Kobayashi,et al.  Microscopic study of superionic transition. , 1996, Physical review. B, Condensed matter.

[212]  H. Iwahara,et al.  Effect of ionic radii of dopants on mixed ionic conduction (H++O2−) in BaCeO3-based electrolytes , 1994 .

[213]  S. Shapiro,et al.  Neutron Scattering Studies of Superionic Conductors , 1979 .

[214]  A. Shluger,et al.  Theoretical study of the stabilization of cubic-phase ZrO2 by impurities. , 1994, Physical review. B, Condensed matter.

[215]  B. Hyde,et al.  Some structures topologically related to cubic perovskite (E21), ReO3 (D09) and Cu3Au (L12) , 1977 .

[216]  J. Schneider,et al.  X-ray powder diffraction of Ag2Te at temperatures up to 1123 K , 1993 .

[217]  C. Carlile,et al.  Quasielastic Neutron Scattering from RbAg4I5 Single Crystal Gives Evidence of Jump Relaxation , 1991 .

[218]  M. Guillopé,et al.  High ionic diffusivity in the perovskite MgSiO3: A molecular-dynamics study , 1988 .

[219]  N. Wilson,et al.  INTERIONIC INTERACTIONS AND FAST-ION CONDUCTION IN CAF2 , 1996 .

[220]  P. Hagenmuller,et al.  Phase equilibrium and ionic conductivity in the PbF2YF3 system , 1983 .

[221]  Y. Takeda,et al.  Electrical conductivity of the ZrO2–Ln2O3 (Ln=lanthanides) system , 1999 .

[222]  C. R. A. Catlow,et al.  Brillouin scattering and theoretical studies of high-temperature disorder in fluorite crystals , 1978 .

[223]  P. Daniel,et al.  The high-temperature phase transition in samarium fluoride, : structural and vibrational investigation , 1998 .

[224]  M. Gillan The simulation of superionic materials , 1985 .

[225]  A. Chadwick High-temperature transport in fluorites , 1983 .

[226]  M. Islam,et al.  Cation doping and oxygen diffusion in zirconia: a combined atomistic simulation and molecular dynamics study , 1998 .

[227]  A. Heuer,et al.  Determination of the structure of the cubic phase in high-ZrO2 Y2O3-ZrO2 alloys by convergent-beam electron diffraction , 1994 .

[228]  S. Chernov,et al.  Structure of lead(II) tetrafluorostannate(II) prepared by hydrothermal synthesis , 1991 .

[229]  H. P. Rooksby,et al.  Transitions in crystal structure of cryolite and related fluorides , 1953 .

[230]  J. Gale,et al.  Theoretical study of native and rare-earth defect complexes in β-PbF 2 , 2000 .

[231]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .

[232]  S. Misture,et al.  In-situ diffraction study of Ba2In2O5 , 2002 .

[233]  S. Yoshikado,et al.  On ionic conduction in the α-phase of PbSnF4 , 1995 .

[234]  S. Matsunaga Structural properties in Ag3SI: A molecular dynamics study of superionic and molten phases , 2003 .

[235]  P. Hagenmuller,et al.  The M1−xM″xF2 + 2x (M = Ca, Sr, Ba, Pb; M″ = Th, U) solid solutions: electrical properties and clustering processes , 1995 .

[236]  S. Hoshino,et al.  On the Phase Transition in Cuprous Iodide , 1952 .

[237]  G. Samara Pressure and temperature dependences of the ionic conductivities of cubic and orthorhombic lead fluoride (PbF2) , 1979 .

[238]  P. Madden,et al.  Polarization effects in the simulation of lead (II) fluoride , 1999 .

[239]  M. Islam,et al.  Modelling the crystal structures of Aurivillius phases , 2001 .

[240]  Jun Akikusa,et al.  Characterization of solid oxide fuel cell using doped lanthanum gallate , 2000 .

[241]  P. Hagenmuller,et al.  Correlations entre proprietes electriques et ordre a courte distance au sein de la solution solide Pb1−xBixF2+x , 1989 .

[242]  M. Gillan,et al.  Molecular dynamics simulation of fast-ion conduction in SrCl2. I. Self-diffusion , 1980 .

[243]  J. Dahn,et al.  Structure and electrochemistry of LixCryCo1−yO2 , 1994 .

[244]  C. Catlow,et al.  EXAFS Study of Yttria‐Stabilized Zirconia , 1986 .

[245]  S. Hull,et al.  The high-temperature structural behaviour of copper(I) iodide , 1995 .

[246]  S. Tanase,et al.  Electrical conduction behavior in (La0.9Sr0.1)MIIIO3−δ (MIII=Al, Ga, Sc, In, and Lu) perovskites , 1997 .

[247]  R. E. Thoma,et al.  Equilibrium Dimorphism of the Lanthanide Trifluorides , 1966 .

[248]  D. Argyriou Measurement of the static disorder contribution to the temperature factor in cubic stabilized ZrO2 , 1994 .

[249]  R. Mcgreevy,et al.  Structural changes in silver bromide at the melting point , 1992 .

[250]  J. Kuwano,et al.  Amperometric PbSnF4-based oxygen sensors: rapid response at room temperature in the operating pressure range 10 kPa–7.2 MPa , 1994 .

[251]  N. Allan,et al.  Lithium oxide and superionic behaviour - a study using potentials from periodic ab initio calculations , 1998 .

[252]  G. Mairesse,et al.  Phase transitions and ionic conductivity in Bi4V2O11 an oxide with a layered structure , 1988 .

[253]  B. Huberman,et al.  Dynamical evidence for sublattice melting in a superionic conductor: NMR on CuI , 1977 .

[254]  G. Mairesse,et al.  The bimevox series: A new family of high performances oxide ion conductors , 1990 .

[255]  R. Withers,et al.  Cation ordering and the stability of fluorite-related phases in ZrO2-LnO1.5 systems: a phase diagram simulation study using Monte Carlo methods , 1993 .

[256]  Solier,et al.  Ionic conductivity of ZrO2-12 mol % Y2O3 single crystals. , 1993, Physical review. B, Condensed matter.

[257]  J. Achache,et al.  Long-period geomagnetic variations and mantle conductivity: an inversion using Bailey's method , 1981 .

[258]  P. Wiseman,et al.  Neutron diffraction studies of cubic tungsten bronzes , 1976 .

[259]  S. Hull,et al.  Crystal structure and superionic conductivity of doped with KF , 1998 .

[260]  L. S. Miller,et al.  Electrical transport and phase stability in silver iodide—cadmium iodide , 1983 .

[261]  B. L. Tembe,et al.  Dynamics in superionic lithium sulphate lattice: paddle wheel versus percolation mechanism , 1992 .

[262]  R. Lechner Quasielastic neutron scattering and super-protonic conductors , 1993 .

[263]  O. Kamishima,et al.  Cluster-Induced Local Distortions and Superionic Transitions of Ionic Conductors AgI and PbF 2 , 2001 .

[264]  Hiroshi Kawamura,et al.  CERAMIC BREEDER RESEARCH AND DEVELOPMENT: PROGRESS AND FOCUS , 2000 .

[265]  M. Hutchings,et al.  Investigation of anion disorder in PbF2 at high temperatures by neutron diffraction , 1982 .

[266]  A Bayesian approach to phase extension , 2001 .

[267]  O. Bohnké,et al.  Modeling Li-ion conductivity in fast ionic conductor La2/3-xLi3xTiO3 , 2002 .

[268]  S. Yoshikado,et al.  The Crystal-Structure of Tetragonal Form Pbsnf4 , 1994 .

[269]  C. Catlow,et al.  Brillouin-scattering and computer-simulation studies of fast-ion conductors: a review , 1990 .

[270]  A. Cheetham,et al.  Defect structure of calcium fluoride containing excess anions I. Bragg scattering , 1971 .

[271]  Kevin S. Knight,et al.  Structural phase transitions, oxygen vacancy ordering and protonation in doped BaCeO3: results from time-of-flight neutron powder diffraction investigations , 2001 .

[272]  P. Madden,et al.  Simulation of pressure-driven phase transitions from tetrahedral crystal structures , 2002 .

[273]  W. Meyer,et al.  Polymer electrolytes for lithium-ion batteries. , 1998, Advanced materials.

[274]  P. Fischer,et al.  An investigation of anharmonic atomic vibrations of gamma -CuCl and gamma -CuBr by powder neutron diffraction , 1994 .

[275]  Chaok Seok,et al.  MECHANISM OF AG+ ORDERING IN AGI , 1998 .

[276]  S. Hull,et al.  Structural characterization of the superionic transition in Ag2HgI4 and Cu2HgI4 , 2000 .

[277]  A. West,et al.  Phase diagrams and crystal chemistry in the Li+ ion conducting perovskites, Li0.5 – 3xRE0.5 +xTiO3 : ReLa, Nd , 1995 .

[278]  J. Goodenough,et al.  Superior perovskite oxide-ion conductor; Strontium- and magnesium-doped LaGaO3 : III. Performance tests of single ceramic fuel cells , 2005 .

[279]  Rose-Noëlle Vannier,et al.  Bi4V2O11 polymorph crystal structures related to their electrical properties , 2003 .

[280]  P. Bruce,et al.  The mechanism of lithium ion mobility in solid electrolytes , 1991 .

[281]  P. Hagenmuller,et al.  Etude des proprietes structurales et electrioues d'un nouveau conducteur anionique: PbSnF4 , 1978 .

[282]  Susumu Suzuki,et al.  Structural Studies on ZrO2-Y2O3 System by Electron Diffraction and Electron Microscopy I , 1985 .

[283]  G. J. Hyland,et al.  The origin of the specific heat anomaly in solid urania , 1983 .

[284]  G. Szabó Lattice gas model on tetrahedral sites of a BCC lattice , 1986 .

[285]  G. Wiegers The Crystal Structure of the Low-Temperature form of Silver Selenide , 1971 .

[286]  H. Dexpert,et al.  X-ray absorption study of the ZrO2Y2O3 system , 1987 .

[287]  L. H. Cohen,et al.  Solid‐Solid Transition Temperatures in PbF2 from Differential Thermal Analyses under Hydrostatic Pressures ≲ 6 kb , 1979 .

[288]  P. Lacorre The LPS concept, a new way to look at anionic conductors , 2000 .

[289]  S. Hoshino,et al.  A Structural Phase Transition in Superionic Conductor Ag 3 SI , 1979 .

[290]  V. Chandrasekhar Polymer Solid Electrolytes: Synthesis and Structure , 1998 .

[291]  W. H. Baur A three dimensionally periodic, eleven coordinated, dense packing of symmetry equivalent spheres , 1981 .

[292]  R. Mcgreevy,et al.  A molecular dynamics study of ionic conduction in CuI. I. Derivation of the interionic potential from dynamic properties , 1995 .

[293]  A. West,et al.  Crystal chemistry of lithium gallium silicate, Li4 – 3xGaxSiO4, solid electrolytes , 1991 .

[294]  H. Schulz CRYSTAL STRUCTURES OF FAST ION CONDUCTORS , 1982 .

[295]  Chen,et al.  X-ray-absorption studies of zirconia polymorphs. II. Effect of Y2O3 dopant on ZrO2 structure. , 1993, Physical review. B, Condensed matter.

[296]  J. N. Bradley,et al.  Relationship of structure and ionic mobility in solid MAg4I5 , 1967 .

[297]  O. Bohnké,et al.  Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate , 1996 .

[298]  J. Réau,et al.  Short-range order and F− ion diffusion inside the Pb1 − xAlxF2 + x solid solution Part II: 27Al NMR investigation and proposal of clustering process , 1997 .

[299]  A. Chadwick,et al.  The electrical conductivity of PbF2 and SrCl2 crystals at high temperatures , 1978 .

[300]  J. O. Thomas,et al.  A single-crystal neutron diffraction study of the structure of the high-temperature rotor phase of lithium sulphate , 1992 .

[301]  H. Kawai,et al.  Order–disorder of the A-site ions and lithium ion conductivity in the perovskite solid solution La0.67−xLi3xTiO3 (x=0.11) , 1999 .

[302]  S. Kondo,et al.  Neutron Diffraction Study of High Ionic Conductor Rb4Cu16I7+xCl13-x at 50-300 K: Correlation with Ionic Conductivity , 1993 .

[303]  J. Cohen,et al.  X-Ray Diffraction Study of Zr(Ca,Y)O2-x. II. Local Ionic Arrangements, , 1980 .

[304]  R. Yakshibaev,et al.  Phase transformations and ionic transport in the Cu2 − δTe superionic conductor , 1988 .

[305]  M. L. Lucía,et al.  Correlated ion hopping in single-crystal yttria-stabilized zirconia , 1997 .

[306]  Ho-kwang Mao,et al.  Structure and crystal chemistry of perovskite-type MgSiO3 , 1978 .

[307]  J. Gesland,et al.  Viscosity and conductivity of the lower mantle; an experimental study on a MgSiO3 perovskite analogue, KZnF3 , 1983 .

[308]  R. Withers,et al.  An electron, and X-ray powder, diffraction study of cubic, fluorite-related phases in various ZrO2Ln2O3 systems , 1991 .

[309]  D. D. Richardson,et al.  Disorder in superionic fluorites , 1979 .

[310]  D. Brinkmann NMR studies of superionic conductors , 1992 .

[311]  F. Shimojo,et al.  Molecular Dynamics Studies of Yttria Stabilized Zirconia. II. Microscopic Mechanism of Oxygen Diffusion , 1992 .

[312]  B. Frit,et al.  Etude par diffractions X et neutronique en temps de voi de la solution solide de type fluorine excedentaire en anions Pb1−xZrxF2+2x (0 ≤ x ≤ 0,18) , 1984 .

[313]  F. Shimojo,et al.  Phase Transition in Superionic Conductor Ag2Se:A Molecular Dynamics Study , 1991 .

[314]  P. Hagenmuller,et al.  Etude par diffraction neutronique des solutions solides K1−xBixF1+2xetRb1−xBixF1+2x , 1982 .

[315]  P. Jacobs,et al.  Defect aggregation in anion-excess fluorites II. Clusters containing more than two impurity atoms , 1984 .

[316]  Fritz Aldinger,et al.  Bismuth based oxide electrolytes— structure and ionic conductivity , 1999 .

[317]  E. A. Secco,et al.  Rotating sulfate ion contribution to electrical conductivity in Li2SO4 and LiNaSO4 , 1986 .

[318]  L. Carrette,et al.  Fuel cells: principles, types, fuels, and applications. , 2000, Chemphyschem : a European journal of chemical physics and physical chemistry.

[319]  A. Ubbelohde,et al.  Melting and crystal structure of cryolite (3NaF, A1F3) , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[320]  J. Sanz,et al.  Li mobility in the orthorhombic Li0.18La0.61TiO3 perovskite studied by NMR and impedance spectroscopies , 2000 .

[321]  Chick C. Wilson,et al.  The defect structure of anion-excess (Ca1−xYx)F2+x with x = 0.06 , 1992 .

[322]  K. Wapenaar,et al.  Solid electrolyte properties of LaF3 , 1980 .

[323]  B. Mellander,et al.  Cubic alkali orthophosphates with high ionic conductivity , 1993 .

[324]  P. Hagenmuller,et al.  On the polymorphism of RbBif4 , 1983 .

[325]  H. Schulz,et al.  Anharmonic temperature factors up to sixth order and atomic potentials in the fast ionic conductor α-Ag3SI , 1981 .

[326]  M. Lerch,et al.  High-temperature neutron scattering investigation of pure and doped lanthanum gallate , 2001 .

[327]  R. Mcgreevy,et al.  Molecular dynamics simulation of quasi-elastic neutron scattering from the fast ion conductor CuI , 1996 .

[328]  P. Woodward Octahedral Tilting in Perovskites. II. Structure Stabilizing Forces , 1997 .

[329]  Daniel Thomas,et al.  Stability range and crystal structure of the oxygen-deficient b.c.c. solid solution Bi(1−x)CdxO(1.5−x2)(0.11 < x < 0.25) , 1986 .

[330]  P. Bruce,et al.  Solid State Electrochemistry , 1997 .

[331]  P. Jacobs,et al.  Computer simulation of δ-bismuth oxide , 1986 .

[332]  A. Chadwick,et al.  Defect structures and ionic transport in lithium oxide , 1988 .

[333]  Mark T. Anderson,et al.  Structural similarities among oxygen-deficient perovskites , 1993 .

[334]  R. Withers,et al.  A Review of Bismuth-Rich Binary Oxides in the Systems Bi2O3–Nb2O5, Bi2O3–Ta2O5, Bi2O3–MoO3, and Bi2O3–WO3 , 1998 .

[335]  Liquan Chen,et al.  High lithium ion conductivity in the perovskite-type compounds Ln12Li12TiO3(Ln=La,Pr,Nd,Sm) , 1994 .

[336]  J. Tarascon,et al.  TEM Studies: The Key for Understanding the Origin of the 3.3 V and 4.5 V Steps Observed in LiMn2O4-based Spinels , 2000 .

[337]  S. Hull,et al.  Determination of structural disorder in superionic by neutron total scattering , 1998 .

[338]  F. Krok,et al.  Electrical and structural study of BICOVOX , 1996 .

[339]  Zhong Lin Wang,et al.  Local ordering of oxygen vacancies in cubic zirconia stabilized with yttria and magnesia II. Determination of local ordering parameters of oxygen vacancies , 1996 .

[340]  P. Vashishta,et al.  Inelastic neutron scattering and dynamics of ions in the super-ionic conductor Ag2S , 1987 .

[341]  D. Macinnes The electronic contribution to the thermodynamics of CO2 I. Specific heat , 1978 .

[342]  C. Angell,et al.  Fast ion conduction in cubic perovskite structures: An ion dynamics study of NaMgF3 , 1981 .

[343]  E. Reguera,et al.  Tribochemical Synthesis and Study of Mixed Potassium-Ferrous Ferrocyanide and its RuII and OsII Analogs , 1995 .

[344]  C. Grey,et al.  Probing the mechanism of fluoride-ion conduction in LaF3 and strontium-doped LaF3 with high-resolution 19f MAS NMR , 1997 .

[345]  F. Shimojo,et al.  Fcc-bcc phase transition of Te sublattice in superionic conductor Ag2Te : a molecular dynamics study , 1992 .

[346]  F. Shimojo,et al.  Partial crystallization and melting of an Se sublattice in the superionic conductor Ag2Se: a molecular dynamics study , 1993 .

[347]  Torell,et al.  Reorientational motion in superionic sulfates: A Raman linewidth study. , 1985, Physical review. B, Condensed matter.

[348]  B. Reuter,et al.  Silbersulfidbromid Ag3SBr und Silbersulfidjodid Ag3Sj. I. Darstellung, Eigenschaften und Phasenverhältnisse von Ag3SBr und Ag3SJ , 1965 .

[349]  C. Catlow,et al.  The defect structure of strontium chloride: II. Anion-excess heavily doped crystals , 1984 .

[350]  M. Touboul,et al.  Structure of dibismuth vanadate Bi2VO5.5 , 1992 .

[351]  K. Clausen,et al.  Quasielastic Diffuse Neutron Scattering from Yttria-Stabilized Zirconia at Elevated Temperatures , 1988 .

[352]  Armin Bunde,et al.  Ionic glasses: History and challenges , 1998 .

[353]  C. R. A. Catlow,et al.  Defect aggregation in anion-excess fluorites. Dopant monomers and dimers , 1982 .

[354]  T. Minami,et al.  MICROSTRUCTURE OF SUPERIONIC COMPOSITES COMPOSED OF FROZEN ALPHA -AGI AND AGI-BASED GLASSES PREPARED BY RAPID QUENCHING , 1995 .

[355]  R. Blachnik,et al.  The phase diagram AgI-PbI2 , 1989 .

[356]  Shik Shin,et al.  Light scattering in superionic conductors , 1991 .

[357]  M. Gillan Collective dynamics in super-ionic CaF2. II. Defect interpretation , 1986 .

[358]  T. Minami,et al.  Stabilization of superionic α-Agl at room temperature in a glass matrix , 1991, Nature.

[359]  S. Badwal,et al.  Electrochemical Techniques in Studies of Solid Ionic Conductors , 1996 .

[360]  W. Kuhs Statistical description of multimodal atomic probability densities , 1983 .

[361]  Paul A. Madden,et al.  Polarization effects in ionic systems from first principles , 1993 .

[362]  H. Schulz,et al.  Determination of the diffusion path in the ionic conductor LaF3 , 1985 .

[363]  C. Grey,et al.  Probing Oxygen Motion in Disordered Anionic Conductors with 17O and 51V MAS NMR Spectroscopy , 2002, Science.

[364]  A. West Crystal chemistry of some tetrahedral oxides , 1975 .

[365]  J. Akridge,et al.  Crystal structure and conductivity of the solid electrolyte α-RbCu 4 Cl 3 I 2 , 1979 .

[366]  J. Bovin,et al.  Solid Electrolyte Behavior of NaMgF3: Geophysical Implications , 1979, Science.

[367]  B. Cooper,et al.  Neutron-diffraction study of Zr(Ca,Y)O/sub 2-x/: Evidence of differing mechanisms for internal and external distortions , 1978 .

[368]  A. Trapananti,et al.  Structural disorder in liquid and solid CuI at high temperature probed by x-ray absorption spectroscopy , 2002 .

[369]  U. Müller,et al.  Symmetrieverwandtschaften bei Varianten des Perowskit-Typs , 2002 .

[370]  M. Islam,et al.  Dopant Substitution and Ion Migration in the LaGaO3-Based Oxygen Ion Conductor , 1998 .

[371]  M. Mogensen,et al.  Conductivity of A- and B-site doped LaAlO3, LaGaO3, LaScO3 and LaInO3 perovskites , 2000 .

[372]  W. Hayes Crystals with the fluorite structure , 1974 .

[373]  V. M. Nield,et al.  Fast-Ion Conduction in Silver Iodide , 1995 .

[374]  S. Hull,et al.  Crystal Structures and Ionic Conductivities of Ternary Derivatives of the Silver and Copper Monohalides: I. Superionic Phases of Stoichiometry MA4I5:RbAg4I5, KAg4I5, and KCu4I5 , 2002 .

[375]  M. Hervieu,et al.  Electronic Crystallization in a Lithium Battery Material: Columnar Ordering of Electrons and Holes in the Spinel LiMn 2 O 4 , 1998 .

[376]  D. F. Fischer,et al.  Enthalpy of thorium dioxide to 3400 K , 1981 .

[377]  J. Strähle,et al.  A new structural principle in anion-excess fluorite-related superlattices , 1980 .

[378]  A. Chadwick,et al.  Ionic conductivity studies of heavily rare earth doped fluorites , 1983 .

[379]  F. D. Boer,et al.  Magnetic order and crystal field effects in the Ce deuterides , 1984 .

[380]  C. Delmas,et al.  Lithium intercalation in Ln13NbO3 perovskite-type phases (Ln = La, Nd) , 1988 .

[381]  J. Hardy,et al.  Molecular dynamics simulation of superionicity in Neighborite, NaMgF3 , 1997 .

[382]  G. Adachi,et al.  Rare earth contribution in solid state electrolytes, especially in the chemical sensor field , 1997 .

[383]  F. Krok,et al.  Defect chemistry of the BIMEVOXes , 2002 .

[384]  S. Hull,et al.  Effect of hydrostatic pressure on the crystal structure and superionic behavior of lead (II) fluoride , 1998 .

[385]  H. Yamamura,et al.  Electrical conductivity anomaly around fluorite–pyrochlore phase boundary , 2003 .

[386]  Priya Vashishta,et al.  Structural Transitions in Superionic Conductors , 1983 .

[387]  J. N. Bradley,et al.  Solids with high ionic conductivity in group 1 halide systems , 1967 .

[388]  S. Vilminot,et al.  High ionic conductivity in new fluorine compounds of tin II. I. On PbSnF4: Relation between structure and conductivity , 1981 .

[389]  P. Madden,et al.  Fluoride ion disorder and clustering in superionic PbF2 , 2001 .

[390]  G. Hu,et al.  High-temperature elastic constants of AgBr , 2001 .

[391]  M. Sanjuán,et al.  Raman and x-ray study of perovskite solid solutions , 1998 .

[392]  H. A. Harwig,et al.  Electrical properties of the α, β, γ, and δ phases of bismuth sesquioxide , 1978 .

[393]  M. Gillan,et al.  Computer simulation of ionic disorder in high-temperature PbF2 , 1982 .

[394]  Sanjeev Mukerjee,et al.  6Li and 7Li Magic‐Angle Spinning Nuclear Magnetic Resonance and In Situ X‐Ray Diffraction Studies of the Charging and Discharging of Li x Mn2 O 4 at 4 V , 2000 .

[395]  S. Hoshino Anomalous Structure of α-AgI , 1954 .

[396]  J. Grannec,et al.  12 – Fast Fluorine Ion Conductors , 1985 .

[397]  F. Rocca,et al.  Local structure and dynamics of disordered systems studied by EXAFS , 1995 .

[398]  M. Salamon Phase Transitions in Ionic Conductors , 1979 .

[399]  Bruno Scrosati,et al.  Fast Ion Transport in Solids , 1993 .

[400]  Structural description of the superionic behaviour in the system (AgI)x–(PbI2)1−x, 2/3≤x≤4/5 , 2002 .

[401]  Y. Takeda,et al.  Ionic conductivity of solid lithium ion conductors with the spinel structure: Li2MCl4 (M = Mg, Mn, Fe, Cd) , 1981 .

[402]  Michisuke Kobayashi,et al.  Molecular dynamics study of ionic motion in α-Ag2Te , 1988 .

[403]  M. Tosi,et al.  Premelting lattice disorder in AgBr and PbF2 , 1983 .

[404]  G. Teufer,et al.  The crystal structure of tetragonal ZrO2 , 1962 .

[405]  Susumu Suzuki,et al.  Structural Studies on the ZrO2–Y2O3 System by Electron Diffraction and Electron Microscopy III , 1987 .

[406]  G. V. Subba Rao,et al.  Oxide pyrochlores — A review , 1983 .

[407]  John H. Strange,et al.  Conductivity and NMR study of ionic mobility in lithium oxide , 1990 .

[408]  R. Mcgreevy,et al.  Structural disorder in CuBr , 1994 .

[409]  Takehiko Takahashi,et al.  Oxide ion conductors based on bismuthsesquioxide , 1978 .

[410]  T. Tyliszczak,et al.  SnK, PbL3, and BaL3 EXAFS, X-ray diffraction and 119Sn Mössbauer spectroscopic studies of ordered MSnF4 (M = Pb and Ba) fluoride ionic conductors with the α-PbSnF4 structure , 1991 .

[411]  N. Bonanos Oxide-based protonic conductors: point defects and transport properties , 2001 .

[412]  I. Swainson,et al.  Phase transitions in tungsten trioxide at high temperatures - a new look , 1999 .

[413]  S. Yoshikado,et al.  Anion disorder and its resulting ionic conductivity of β-Pb1−xBixF2+x(x≤0.30) and β-Pb1−xYxF2 +x , 1986 .

[414]  B. Willis The anomalous behaviour of the neutron reflexion of fluorite , 1965 .

[415]  I. R. Mcdonald,et al.  Structure of the fast-ion conducting phase of soil lithium sulphate , 1984 .

[416]  N. Vouroutzis,et al.  Phase Transformations in Cuprous Telluride , 1989 .

[417]  Chaok Seok,et al.  Phase transitions in AgI , 1997 .

[418]  J. C. Phillips Ionicity of the Chemical Bond in Crystals , 1970 .

[419]  M. Hutchings,et al.  Incoherent quasielastic neutron scattering investigation of chlorine ion hopping in the fast-ion phase of strontium chloride , 1983 .

[420]  Mark R. Wilson,et al.  ‘Covalent’ effects in ‘ionic’ systems , 1996 .

[421]  J. Grannec,et al.  On a low-temperature form of KBiF4 , 1983 .

[422]  R. Mcgreevy,et al.  Reorientation of anions in ion-conducting sodium ortho-phosphate: A reverse Monte Carlo study of neutron diffraction data , 2002 .

[423]  R. D. Armstrong,et al.  Some factors responsible for high ionic conductivity in simple solid compounds , 1973 .

[424]  G. Ranieri,et al.  Studies of ionic motion in perovskite fluorides , 1983 .

[425]  P. Madden,et al.  Nature of the superionic transition in Ag+ and Cu+ halides , 2003 .

[426]  N. Nicoloso,et al.  Percolation model for the anomalous conductivity of fluorite-related oxides , 1997 .

[427]  The crystal structures of superionic Ag3SI , 2001 .

[428]  M. Islam,et al.  Atomistic Simulation Studies of Lithium and Proton Insertion in Spinel Lithium Manganates , 1997 .

[429]  Michele Parrinello,et al.  Ab initio study of structural and electronic properties of yttria-stabilized cubic zirconia , 1999 .

[430]  M. Islam,et al.  Oxygen Ion Migration in Perovskite-Type Oxides , 1995 .

[431]  G. Gattow,et al.  Über Wismutoxide. III. Die Kristallstruktur der Hochtemperaturmodifikation von Wismut(III)‐oxid (δ‐Bi2O3) , 1962 .

[432]  J. Mikkelsen,et al.  Extended-x-ray-absorption-fine-structure investigation of mobile-ion density in superionic AgI, CuI, CuBr, and CuCl , 1981 .

[433]  R. Gilles,et al.  Structure and ionic conductivity in doped LaGaO3 , 2002 .

[434]  R. Huggins,et al.  Anion disorder and ionic motion in lead fluoride (β-PbF2) , 1980 .

[435]  Kalpataru Das,et al.  Time-Dependent Degradation Due to the Gradual Phase Change in BICUVOX and BICOVOX Oxide-Ion Conductors at Temperatures below about 500°C , 2002 .

[436]  S. M. Shapiro,et al.  Inelastic neutron scattering measurements of the diffusion in. beta. -Ag/sub 2/S , 1984 .

[437]  C. Lucat,et al.  About the allotropic transformations of PbSnF4 , 1980 .

[438]  C. Lucat,et al.  Etude par diffraction de neutrons de la solution solide Pb1−xBixF2+x: Correlations entre structure et conductivité ionique , 1980 .

[439]  A. I. Ruiz,et al.  Structural Refinement by Neutron Diffraction of La1.12Li0.62Ti2O6 , 1999 .

[440]  H. Iwahara Oxide-ionic and protonic conductors based on perovskite-type oxides and their possible applications , 1992 .

[441]  C. Catlow,et al.  Shell model calculations of the energies of formation of point defects in alkaline earth fluorides , 1973 .

[442]  Maier,et al.  Simple phenomenological approach to premelting and sublattice melting in Frenkel disordered ionic crystals. , 1995, Physical review. B, Condensed matter.

[443]  O. Greis,et al.  Über fluorit- und tysonitverwandte Ordnungsphasen im System CaF2YF3 , 1978 .

[444]  G. Mairesse,et al.  Composition dependence of oxide anion conduction in the BIMEVOX family , 1996 .

[445]  H. Lutz,et al.  Structural phase transitions of fast lithium ion conductors Li2MIICl4 (MII=Mg, Mn, Cd) , 1992 .

[446]  K. F. Portella,et al.  Characterization of α ↔ β PbF2 phase transition by several techniques , 2000 .

[447]  Michael M. Thackeray,et al.  Structural Considerations of Layered and Spinel Lithiated Oxides for Lithium Ion Batteries , 1995 .

[448]  R. Blachnik,et al.  The phase diagrams of Ag2XAgY (X = S, Se, Te; Y = Cl, Br, I): Mixtures and the structure of Ag5Te2Cl , 1985 .

[449]  S. Chandra Superionic solids: Principles and applications , 1981 .

[450]  K. Khoo,et al.  Mean-field renormalization group study of the long-range Ising model , 2001 .

[451]  C. Grey,et al.  Resolving the different dynamics of the fluorine sublattices in the anionic conductor BaSnF(4) by using high-resolution MAS NMR techniques. , 2002, Journal of the American Chemical Society.

[452]  H. A. Harwig On the Structure of Bismuthsesquioxide: The α, β, γ, and δ-phase , 1978 .

[453]  J. Rino,et al.  A molecular dynamics study of superionic Ag2Se , 1989 .

[454]  C. Catlow,et al.  Molecular dynamics study of the effect of doping and disorder on diffusion in gadolinium zirconate , 1998 .

[455]  Hitoshi Watanabe,et al.  Conductivities of a sintered pellet and a single crystal of Li2O , 1983 .

[456]  R. Sadanaga,et al.  X-RAY STUDY ON THE ^|^alpha;-^|^beta; TRANSITION OF Ag2S , 1967 .

[457]  A. Lundén Evidence for and against the paddle-wheel mechanism of ion transport in superionic sulphate phases , 1988 .

[458]  R. Mcgreevy,et al.  Mechanisms of ionic conduction in Li2SO4 and LiNaSO4: Paddle wheel or percolation? , 1995 .

[459]  H. Berg,et al.  The LiMn2O4 to λ-MnO2 phase transition studied by in situ neutron diffraction , 2001 .

[460]  Michael M. Thackeray,et al.  Improved capacity retention in rechargeable 4 V lithium/lithium- manganese oxide (spinel) cells , 1994 .

[461]  Y. Takeda,et al.  Structure, ionic conductivity and phase transformation of double chloride spinels , 1988 .

[462]  A. Nakamura,et al.  Defect Structure, Ionic Conductivity, and Diffusion in Yttria Stabilized Zirconia and Related Oxide Electrolytes with Fluorite Structure , 1986 .

[463]  J. Goodenough,et al.  Oxide-ion conduction in Ba2In2O5 and Ba3In2MO8 (M=Ce, Hf, or Zr) , 1990 .

[464]  P. Madden,et al.  The high-temperature superionic behaviour of Ag2S , 2002 .

[465]  C. Catlow,et al.  EXAFS and molecular modelling studies of Rb1−xBixF1+2x , 1994, Journal of Materials Science.

[466]  C. Grey,et al.  A 1- and 2-D 19F MAS NMR Study of Fluoride-Ion Mobility in α PbF2 , 1998 .

[467]  P. Hagenmuller Inorganic solid fluorides : chemistry and physics , 1985 .

[468]  M. Dixon Molecular dynamics simulation of fast-ion conduction in SrCl2. II. Distribution of ions and specific heat anomaly , 1980 .

[469]  A. Radulescu,et al.  LOW-FREQUENCY COLLECTIVE MODES IN THE SUPERIONIC PHASE OF LEAD FLUORIDE STUDIED BY QUASIELASTIC COLD NEUTRON SCATTERING , 1999 .

[470]  B. Frit,et al.  Etude par R.M.N. du 19F de la mobilite anionique dans la solution solide Pb1−xZrxF2+2x (0,025 ⩽ x ⩽ 0,18) de type fluorine excedentaire en anions , 1986 .

[471]  B. Wuensch Cation distributions, bonding and transport behavior in silver and copper fast-ion conductors with simple anion packings , 1993 .

[472]  R. Cava,et al.  Mobile ion distribution and anharmonic thermal motion in fast ion conducting Cu2S , 1981 .

[473]  K. Knight,et al.  High-temperature phase transitions in tungsten trioxide - the last word? , 2002 .

[474]  P. Bruce,et al.  A re-examination of the lisicon structure using high-resolution powder neutron diffraction: evidence for defect clustering , 1989 .

[475]  I. Swainson,et al.  Transition to a new tetragonal phase of WO3: crystal structure and distortion parameters , 1999 .

[476]  K. Shahi,et al.  Phase transition and theAg+-ion diffusion in AgI: Effect of homovalentBr−-ion substitution , 1981 .

[477]  J. Cohen,et al.  X-ray diffraction study of Zr(Ca,Y)O2-x. I. The average structure , 1979 .

[478]  A. Lundén,et al.  Electrical Conductivity of Solid and Molten Lithium Sulfate , 1965 .

[479]  J. Gale,et al.  Computer modelling as a technique in materials chemistry , 1994 .

[480]  R. Hink,et al.  Phase Equilibria and Ordering in the System ZrO2‐Y2O3 , 1978 .

[481]  J. Bouillot,et al.  High-temperature mean square ionic displacements in KZnF3 , 1986 .

[482]  S. Kikkawa,et al.  Structural refinement of Ag3SI by single crystal X-ray diffraction method , 1994 .

[483]  J. Kjems,et al.  Ionic conductivity of the perovskites NaMgF3, KMgF3, KMgK3 and KZnF3 at high temperatures , 1985 .

[484]  B. Hyde,et al.  Inorganic Crystal Structures , 1989 .

[485]  J. Fergus The application of solid fluoride electrolytes in chemical sensors , 1997 .

[486]  Y. Shirakawa,et al.  The Transport Properties of Cations in the Superionic Phase of AgxCu1-xI , 1995 .

[487]  Takashi Uchida,et al.  High ionic conductivity in lithium lanthanum titanate , 1993 .

[488]  P. Fischer,et al.  Crystal structures and phase transitions of orthorhombic and rhombohedral RGaO3 (R=La,Pr,Nd) investigated by neutron powder diffraction , 1994 .

[489]  Michisuke Kobayashi,et al.  Review on structural and dynamical properties of silver chalcogenides , 1990 .

[490]  B. Hyde,et al.  The solid electrolyte transition and melting in salts , 1976 .

[491]  K. Knight,et al.  Thermal expansion and atomic displacement parameters of cubic KMgF3 perovskite determined by high-resolution neutron powder diffraction , 2002 .

[492]  E. A. Secco Paddle-wheel versus percolation model , 1993 .

[493]  H. Günther,et al.  6Li and 7Li MAS NMR Studies on Fast Ionic Conducting Spinel-Type Li2MgCl4, Li2–xCuxMgCl4, Li2–xNaxMgCl4, and Li2ZnCl4 , 2002 .

[494]  C. Catlow,et al.  The nature of disorder in the superionic state of fluorites , 1982 .

[495]  W. Göpel,et al.  Oxide ion conducting solid electrolytes based on Bi2O3 , 1996 .

[496]  C. Catlow Transport in doped fluorite oxides , 1984 .

[497]  N. Thomas The compositional dependence of octahedral tilting in orthorhombic and tetragonal perovskites , 1996 .

[498]  P. W. Winter,et al.  A theoretical analysis of the electronic specific heat of solid urania , 1986 .

[499]  M. Ingram Superionic glasses: theories and applications , 1997 .

[500]  J. Goodenough Ceramic solid electrolytes , 1997 .

[501]  Ray,et al.  Phase transformations and polytypism in silver iodide: A molecular-dynamics study. , 1991, Physical review. B, Condensed matter.

[502]  M. Gillan,et al.  The Energetics of Frenkel Defects in Li2O from First Principles , 1992 .

[503]  O. Yamamoto Copper Solid Electrolyte-Copper(I) Halide and Alkali Halide Systems , 1993 .

[504]  G. Dénés,et al.  Understanding the phase transitions and texture in superionic PbSnF4 , 1999 .

[505]  R. Fleming,et al.  Diffuse x-ray scattering study of single crystal alpha-AgI , 1983 .

[506]  B. Ray,et al.  Structural and phase equilibrium comparisons of Ag2HgI4 with Ag2CdI4 and Ag2ZnI4 , 1984 .

[507]  H. Rossell Crystal structures of some fluorite-related M7O12 compounds , 1976 .

[508]  M. Aniya A chemical approach for the microscopic mechanism of fast ion transport in solids , 1992 .

[509]  A. Tressaud,et al.  Role of metal fluoride octahedra in the mechanism of phase transitions in A2BMF6 elpasolites , 2002 .

[510]  E. A. Secco Paddle wheel mechanism in lithium sulfates: Arguments in defense and evidence against , 1992 .

[511]  P. Jacobs,et al.  Computational simulations of δ-Bi2O3. III: A comparative study of static lattice models , 1987 .

[512]  M. Jansen,et al.  Anion reorientation in an ion conducting plastic crystal – coherent quasielastic neutron scattering from sodium ortho-phosphate , 1999 .

[513]  S. Hull,et al.  Dynamical disorder at elevated temperature in Li2O , 1989 .

[514]  Paul A. Madden,et al.  Transformations between tetrahedrally and octahedrally coordinated crystals: the wurtzite → rocksalt and blende → rocksalt mechanisms , 2002 .

[515]  P. Echegut,et al.  Lithium conductivity in LiKSO4 assisted by sulfate orientational disorder , 1988 .

[516]  D. Hatch,et al.  Ferroelastic phase transition in cryolite, Na3AlF6, a mixed fluoride perovskite: High temperature single crystal X-ray diffraction study and symmetry analysis of the transition mechanism , 1993 .

[517]  P. Fedorov,et al.  Ionic conductivity in the single crystals of non-stoichiometric fluorite phases M1−xRxF2+x (M=Ca, Sr, Ba; R=Y, La-Lu) , 1982 .

[518]  Chick C. Wilson,et al.  A neutron diffraction study of the superionic transition in ? with x = 0.06 , 1997 .

[519]  G. Szabó,et al.  The lattice gas model on tetrahedral sites of a BCC lattice: anisotropic diffusion in the intermediate phase , 1986 .

[520]  B. Ray,et al.  Hot stage X-ray diffractometer studies on Ag2PbI4 and Ag4PbI6 , 1985 .

[521]  R. B. Wilsey XXXI. The crystal structure of the silver halides , 1921 .

[522]  R. Benz Electrical Conductivity of PbF2 , 1975 .

[523]  H. Lutz,et al.  Ternary lithium halides, structure maps, characteristic M-X distances, and stability , 1997 .

[524]  R Dickman First- and second-order phase transitions in a driven lattice gas with nearest-neighbor exclusion. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[525]  B. K. Patel,et al.  Performance of Ag/RbAg4I5/I2 solid electrolyte batteries after ten years storage , 1983 .

[526]  S. Haile,et al.  Connection between oxygen-ion conductivity of pyrochlore fuel-cell materials and structural change with composition and temperature , 2000 .

[527]  P. Hagenmuller,et al.  Transport properties of phases belonging to the PbF2TaF5 system , 1986 .

[528]  M. Yoshimura,et al.  Crystal structure analyses of the pyrochlore and fluorite-type Zr2Gd2O7 and anti-phase domain structure , 1989 .

[529]  B. Fender,et al.  The structure of cubic ZrO2:YO1.5 solid solutions by neutron scattering , 1974 .

[530]  A. Belous Synthesis and electrophysical properties of novel lithium ion conducting oxides , 1996 .

[531]  W. D. Parkinson The global conductivity distribution , 1988 .

[532]  A. Yamada,et al.  Jahn-Teller structural phase transition around 280K in LiMn2O4 , 1995 .

[533]  J. B. Goodenough,et al.  Review Lecture - Fast ionic conduction in solid , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[534]  A. Doi,et al.  Three steps of acoustic relaxation in (AgI)x(Ag4P2O7)1−x glass melts , 1994 .

[535]  M. Jansen Volume Effect or Paddle‐Wheel Mechanism—Fast Alkali‐Metal Ionic Conduction in Solids with Rotationally Disordered Complex Anions , 1991 .

[536]  R. Withers,et al.  A 3D Model for the Diffuse Scattering in Cubic Stabilized Zirconias , 1993 .

[537]  J. N. Bradley,et al.  Potassium iodide + silver iodide phase diagram. High ionic conductivity of KAg4I5 , 1966 .

[538]  S. Mayo,et al.  A Modulation Wave Approach to Understanding the Disordered Structure of Cubic Stabilized Zirconias (CSZs) , 1995 .

[539]  J. Maier,et al.  A computational study of cation defects in LaGaO3 , 2003 .

[540]  K. Funke Ion transport and relaxation studied by high-frequency conductivity and quasi-elastic neutron scattering , 1991 .

[541]  Michael T. Hutchings,et al.  Observation of Oxygen Frenkel Disorder in Uranium Dioxide above 2000 K by Use of Neutron-Scattering Techniques , 1984 .

[542]  F. Shimojo,et al.  Molecular dynamics studies of yttria stabilized zirconia. I: Structure and oxygen diffusion , 1992 .

[543]  James H. White,et al.  Rational selection of advanced solid electrolytes for intermediate temperature fuel cells , 1992 .

[544]  T. Minami,et al.  Preparation and characterization of α-AgI frozen superionic glasses , 1996 .

[545]  J. Mikkelsen,et al.  Position and Dynamics of Ag Ions in Superionic AgI Using Extended X-Ray Absorption Fine Structure. , 1977 .

[546]  J. Kennedy,et al.  Ionic Conductivity of Doped Beta‐Lead Fluoride , 1976 .

[547]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[548]  D. Hohnke Ionic conduction in doped oxides with the fluorite structure , 1981 .

[549]  S. Hull,et al.  The crystal structures, microstructure and ionic conductivity of Ba2In2O5 and Ba(InxZr1-x)O3-x/2 , 2002 .

[550]  F. M. Mulder,et al.  Lithium dynamics in LiMn2O4 probed directly by two-dimensional (7)Li NMR. , 2001, Physical review letters.

[551]  M. Gillan,et al.  Quasi-elastic scattering in fast-ion conducting SrCl2: a molecular dynamics study , 1980 .

[552]  A. Belzner,et al.  The thermal vibrations and the fluorine ionic conductivity in LaF3 , 1994 .

[553]  S. Chaplot,et al.  Molecular dynamics simulation of phase transitions and melting in MgSiO3 with the perovskite structure , 1998 .

[554]  T. Norby Fast oxygen ion conductors—from dopedto ordered systems , 2001 .

[555]  A. M. Glazer,et al.  The classification of tilted octahedra in perovskites , 1972 .

[556]  P. Hagenmuller,et al.  Etude par RMN de 19F de la Solution Solide K1−xBixF1+2x et de la Phase Ordonnée KBi3F10 , 1986 .

[557]  C. Liang,et al.  The Effect of Trivalent Cations on the Conduction Characteristics of PbF2 , 1977 .

[558]  R. Brook,et al.  A study of oxygen ion conductivity in doped non-stoichiometric oxides , 1982 .

[559]  P. Madden,et al.  Quadrupole Polarization in Simulations of Ionic Systems: Application to AgCl , 1996 .

[560]  J. Maguire,et al.  Incorporation of divalent ions in A2B2O7 pyrochlores , 2003 .

[561]  M. Hutchings High-temperature studies of UO2 and ThO2 using neutron scattering techniques , 1987 .

[562]  J. Bernasconi,et al.  Anomalous Frequency-Dependent Conductivity in Disordered One-Dimensional Systems , 1979 .

[563]  T. Duffy,et al.  Stability and Structure of MgSiO3 Perovskite to 2300-Kilometer Depth in Earth's Mantle , 2001, Science.

[564]  P. Vashishta,et al.  Ionic motion in superionic Ag2S , 1985 .

[565]  C. Catlow,et al.  Direct observations of the dopant environment in fluorites using EXAFS , 1984, Nature.

[566]  P. Strobel,et al.  Thermal behaviour of Bi4V2O11: X-ray diffraction and impedance spectroscopy studies , 1995 .

[567]  J. Alonso,et al.  Octahedral tilting and ordering of vacancies in the fast ion conductor Li0.12La0.63TiO3 perovskite: a neutron diffraction study , 2002 .

[568]  P. Bruce,et al.  Structure determination of LISICON solid solutions by powder neutron diffraction , 1988 .

[569]  S. Geller Crystal Structure of the Solid Electrolyte, RbAg4I5 , 1967, Science.

[570]  R. Withers,et al.  Diffuse scattering in yttria-stabilized cubic zirconia , 1992 .

[571]  Tallon Constant-stress molecular dynamics: The phase diagram of silver iodide. , 1988, Physical review. B, Condensed matter.

[572]  R. Grimes,et al.  Nonstoichiometry in A2B2O7 Pyrochlores , 2004 .

[573]  J. Bougnot,et al.  Etude du domaine d'existence de la phase α″ du tellurure cuivreux a partir de la conductivite electrique , 1970 .

[574]  O. Bohnké,et al.  Nuclear magnetic resonance investigation of Li+-ion dynamics in the perovskite fast-ion conductor Li3xLa2/3-x 1/3-2xTiO3 , 2002 .

[575]  A. Cheetham,et al.  A powder neutron diffraction study of lanthanum and cerium trifluorides , 1976 .

[576]  Alan V. Chadwick,et al.  Electrical conductivity measurements of ionic solids , 1991 .

[577]  P. Bruce,et al.  Defect clustering in lisicon solid electrolytes , 1990 .

[578]  C. Grey,et al.  Ion mobility in α-PbF2: a computer simulation study , 2001 .

[579]  R. Kanno,et al.  Neutron diffraction stufy of the high-fluoride-ion conductor, PbSnF4, prepared under an HF atmosphere , 1994 .

[580]  A. D. Lee,et al.  Redetermination of the structure of hessite, Ag2Te-III , 1993 .

[581]  Price,et al.  Ab initio molecular dynamics with variable cell shape: Application to MgSiO3. , 1993, Physical review letters.

[582]  T. Minami,et al.  Variation of electronic state of AgI-based superionic conductors with movement of Ag ions , 2000 .

[583]  D. Cox,et al.  Neutron diffraction investigation of Zr3Y4O12 , 1980 .

[584]  C. Pistorius,et al.  Phase Diagrams of the Cuprous Halides to High Pressures , 1968 .

[585]  S. Hoshino,et al.  Distribution and anharmonic thermal vibration of cations in α-AgI , 1977 .

[586]  R. Mcgreevy Interpretation of the diffusion anomaly in the copper halides in terms of the interionic potential , 1997 .

[587]  M. Elcombe,et al.  A powder neutron diffraction study of λ and γ manganese dioxide and of LiMn2O4 , 1994 .

[588]  P. Woodward,et al.  The High-Temperature Phases of WO3 , 1999 .

[589]  W. Schmidt,et al.  Chloride spinels: A new group of solid lithium electrolytes , 1981 .

[590]  P. Boolchand,et al.  Mobile silver ions and glass formation in solid electrolytes , 2001, Nature.

[591]  M. G. Ford,et al.  Molecular dynamics simulation of ionic conductivity in the fluoride-perovskite KCaF3 , 1995 .

[592]  J. Laval Short-range order in heavily doped CaF2:Ln3+ fluorites: A powder neutron diffraction study , 1988 .

[593]  B. Hellsing,et al.  Theoretical investigation of the pure and Zn-doped α and δ phases of Bi 2 O 3 , 2002 .

[594]  K. Knight Structural phase transitions in BaCeO3 , 1994 .

[595]  T. Ishihara,et al.  High-Temperature Powder Neutron Diffraction Study of the Oxide Ion Conductor La0.9Sr0.1Ga0.8Mg0.2O2.85 , 1998 .

[596]  A. West,et al.  Review of crystalline lithium-ion conductors suitable for high temperature battery applications , 1997 .

[597]  M. Alario-Franco,et al.  Modulated Structure of La1/3−xLi3xNbO3 0≤x≤0.06 Perovskite-Related Materials , 1999 .

[598]  A. Yamada Lattice Instability in Li(LixMn2−x)O4 , 1996 .

[599]  F. Frey,et al.  Defect Structure and Diffuse Scattering of Zirconia Single Crystals at Elevated Temperatures and Simultaneously Applied Electric Field , 1995 .

[600]  J. Réau,et al.  Evolution du processus de clusterisation au sein de la solution solide Pb1−xZrxF2+2x , 1990 .

[601]  M. O'Keeffe,et al.  Ionic conductivity of some alkaline earth halides , 1975 .

[602]  S. Ushioda,et al.  Light Scattering in Superionic Conductors , 1979 .

[603]  F. Krok,et al.  Defect structure of quenched γ-BINIVOX , 1998 .

[604]  Toward Rational Design of Fast Ion Conductors: Molecular Dynamics Modeling of Interfaces of Nanoscale Planar Heterostructures , 2002 .

[605]  W. C. Mackrodt,et al.  Theoretical Estimates of Point Defect Energies in Cubic Zirconia , 1986 .

[606]  C. Grey,et al.  High-Resolution Solid State 19F MAS NMR Study of Ionic Motion in .alpha.-PbF2 , 1995 .

[607]  K. Eberl,et al.  Mesoscopic fast ion conduction in nanometre-scale planar heterostructures , 2000, Nature.

[608]  T. Tyliszczak,et al.  Sn-K and Pb-L3 EXAFS, X-Ray Diffraction, and 119Sn Mössbauer Spectroscopic Studies of Ordered β-PbSnF4 and Disordered Pb1-xSnxF2 (x = 0.3, 0.4) Solid Solutions and PbSn4F10: High Performance Fluoride Ion Conductors , 1993 .

[609]  Chiarotti,et al.  Silver-ion disorder in alpha -AgI: A computer simulation study. , 1991, Physical review. B, Condensed matter.

[610]  J. Rousseau,et al.  De´termination pre´cise de la structure de la chiolite Na5Al3F14 ete´tude par R.P.E. de Na5Al3F14:Cr3+ , 1981 .

[611]  T. Schleid,et al.  La3F3[Si3O9]: Das erste Fluoridsilicat aus dem ternären System LaF3/La2O3/SiO2 , 1999 .

[612]  C. R. A. Catlow,et al.  Computer simulation of solids , 1982 .

[613]  K. Kreuer Proton Conductivity: Materials and Applications , 1996 .

[614]  M. Gillan Collective dynamics in superionic CaF2. I. Simulation compared with neutron-scattering experiment , 1986 .

[615]  Y. Takeda,et al.  Phase diagram and high copper ion conductivity of the copper(I) chloride-rubidium chloride system , 1983 .

[616]  G. White,et al.  Thermal expansion of fluorites at high temperatures , 1986 .

[617]  S. N. Ruddlesden,et al.  New compounds of the K2NIF4 type , 1957 .

[618]  T. Etsell,et al.  Electrical properties of solid oxide electrolytes , 1970 .

[619]  P. Fedorov,et al.  Specific features of ion transport in nonstoichiometric fluorite-type Ba1−xRxF2+x (R=La−Lu phases , 1990 .

[620]  B. Mellander,et al.  Phase Diagram of Silver Iodide in the Pressure Range 2.5-10 kbar and the Temperature Range 4-330° C , 1980 .

[621]  Mamoru Watanabe,et al.  Atomistic simulation study of K-hollandite: Ionic correlation and dynamics of the linearly disordered solid , 1999 .

[622]  R. Cava,et al.  Single-crystal neutron diffraction study of the fast-ion conductor β-Ag2S between 186 and 325°C , 1980 .

[623]  W. Andreoni Ternary superionic conductors: Structural aspects , 1983 .

[624]  B. Huberman,et al.  Superionic conductors: Transitions, structures, dynamics , 1979 .

[625]  K. Knight The crystal structure of russellite; a re-determination using neutron powder diffraction of synthetic Bi2WO6 , 1992, Mineralogical Magazine.

[626]  D. Gregory,et al.  Phases in the System Ba2M2-xCuxO4+δ, M = In, Sc: Structure and Oxygen Stoichiometry , 1993 .

[627]  M. Aniya Superionicity as a local fluctuation of the chemical bond , 1994 .

[628]  P. Hagenmuller,et al.  The cubo-octahedral cluster in the fluorite-type lattice: A theoretical approach , 1984 .

[629]  M. Hutchings,et al.  Neutron scattering studies of acoustic phonon modes in PbF2 up to high temperatures , 1979 .

[630]  Chiarotti,et al.  Ordering of the silver ions in alpha -AgI: A mechanism for the alpha - beta phase transition. , 1992, Physical review. B, Condensed matter.

[631]  D. Keen,et al.  Diffuse Neutron Scattering from Crystalline Materials , 2001 .

[632]  M. T. Van In vitro Control of de novo Flower, Bud, Root, and Callus Differentiation from Excised Epidermal Tissues , 1973, Nature.

[633]  R. Cava,et al.  Single-crystal neutron-diffraction study of AgI between 23° and 300°C , 1977 .

[634]  K. Funke Mechanisms of Ionic Conduction in Solid Electrolytes , 1997 .

[635]  Y. Torii,et al.  Crystallization in rapid quenching of La0.33NbO3 melt , 1982 .

[636]  S. Hull,et al.  Structural behaviour at the γ-β phase transition of Ag3SI , 2001 .