Development of a numerical groundwater flow model using SRTM elevations

Remotely-sensed elevation data are potentially useful for constructing regional scale groundwater models, particularly in regions where ground-based data are poor or sparse. Surface-water elevations measured by the Shuttle Radar Topography Mission (SRTM) were used to develop a regional-groundwater flow model by assuming that frozen surface waters reflect local hydraulic head (or groundwater potential). Drainage lakes (fed primarily by surface water) are designated as boundary conditions and seepage lakes and isolated wetlands (fed primarily by groundwater) are used as observation points to calibrate a numerical flow model of the 900 km2 study area in the Northern Highland Lakes Region of Wisconsin, USA. Elevation data were utilized in a geographic information system (GIS) based groundwater-modeling package that employs the analytic element method (AEM). Calibration statistics indicate that lakes and wetlands had similar influence on the parameter estimation, suggesting that wetlands might be used as observations where open water elevations are unreliable or not available. Open water elevations are often difficult to resolve in radar interferometry because unfrozen water does not return off-nadir radar signals.RésuméLes données obtenues par télédétection peuvent être utiles pour l’élaboration de modèles hydrogéologiques à l’échelle régionale et particulièrement dans les régions où les données d’élévations du sol sont rares ou éparses. Les élévations des niveaux d’eaux de surface mesurées par la navette de la mission de topographie radar (SRTM) ont été utilisées pour élaborer un modèle hydrogéologique d’écoulement à l’échelle régionale, en faisant l’hypothèse que les eaux de surface gelées correspondent au niveau piézomètrique local (ou niveau des eaux souterraines). Les lacs de drainage (principalement alimentés par les eaux de surface) sont choisis comme conditions aux limites et les lacs d’infiltration et marais isolés (principalement alimentés par les eaux souterraines) sont utilisés comme zones d’observation pour calibrer un modèle numérique d’écoulement d’une zone d’étude de 900 km2, localisée dans la région des lacs du Northern Highland au Wisconsin, Etats-Unis. Les données d’élévations ont été utilisées avec une suite logicielle de modélisation hydrogéologique basée sur l’approche système d’information géographique (SIG) et utilisant la méthode des éléments analytiques (AEM en anglais). Les statistiques de la calibration montrent que les lacs et les marais présentaient une influence similaire sur l’estimation des paramètres, ce qui suggère que les marais pourraient être utilisés comme zones d’observation là où l’élévation des eaux de surface est non fiable ou non disponible. Les élévations des eaux de surface sont souvent difficiles à obtenir avec l’interférométrie radar car les eaux non gelées ne renvoient pas les signaux radar latéraux (off-nadir).ResumenLos datos de elevación provenientes de sensores remotos tienen un uso potencial para la construcción de modelos de agua subterránea de escala regional, particularmente en regiones donde los datos basados en el terreno son pobres o escasos. Se usaron elevaciones de la superficie del agua medidas por la Misión de Topografía Radar de Trayectos Cortos (SRTM) para desarrollar un modelo regional de flujo de agua subterránea mediante el supuesto de que las aguas superficiales congeladas reflejan la presión hidráulica local (o potencial de agua subterránea). Los lagos de drenaje (alimentados principalmente por agua superficial) se han designado como condiciones limitantes y los lagos de escurrimiento y humedales aislados (alimentados principalmente por agua subterránea) se han usado como puntos de observación para calibrar un modelo de flujo numérico de los 900 km2 del área de estudio en la Región de Tierras Altas al Norte de los Lagos de Wisconsin, Estados Unidos. Los datos de elevación se utilizaron en un Sistema de Información Geográfico (SIG) basado en un paquete de modelizado de aguas subterráneas que usa el método de elemento analítico (AEM). La calibración estadística indica que los lagos y humedales tuvieron influencia similar en la estimación de parámetros lo que sugiere que los humedales pueden usarse como observaciones donde las elevaciones de agua expuesta no son confiables o no están disponibles. Las elevaciones de agua expuesta son difíciles de resolver mediante interferometría de radar debido a que el agua no congelada no retorna las señales de radar nadir.

[1]  Kamal Sarabandi,et al.  Michigan microwave canopy scattering model , 1990 .

[2]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[3]  Angela Lee,et al.  Perspectives on … Environmental Systems Research Institute, Inc , 1997 .

[4]  Eric S. Kasischke,et al.  Sensitivity of ERS-1 and JERS-1 radar data to biomass and stand structure in Alaskan boreal forest , 1995 .

[5]  R. Hunt,et al.  Estimating Recharge Rates with Analytic Element Models and Parameter Estimation , 2006, Ground water.

[6]  G. W. Snedecor Statistical Methods , 1964 .

[7]  Philip A. Townsend,et al.  Estimating forest structure in wetlands using multitemporal SAR , 2002 .

[8]  Matthew W Becker,et al.  Potential for Satellite Remote Sensing of Ground Water , 2006, Ground water.

[9]  James R. Craig,et al.  Analytic-Element Modeling of Supraregional Groundwater Flow: Concepts and Tools for Automated Model Configuration , 2007 .

[10]  B. L. Huneycutt,et al.  The SIR-C/X-SAR Synthetic Aperture Radar system , 1991, IEEE Trans. Geosci. Remote. Sens..

[11]  Kyle McDonald,et al.  Modeling multi-frequency Diurnal backscatter from a walnut orchard , 1991, IEEE Trans. Geosci. Remote. Sens..

[12]  M. Dobson,et al.  The use of Imaging radars for ecological applications : A review , 1997 .

[13]  J. Attig,et al.  The pleistocene geology of Vilas County, Wisconsin , 1984 .

[14]  E. Poeter,et al.  Inverse Models: A Necessary Next Step in Ground‐Water Modeling , 1997 .

[15]  Kevin B. Smith,et al.  Analysis of space-borne SAR data for wetland mapping in Virginia riparian ecosystems , 2001 .

[16]  Randall J Hunt,et al.  Ground Water Modeling Applications Using the Analytic Element Method , 2006, Ground water.

[17]  Yong Wang,et al.  Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar , 1995, IEEE Trans. Geosci. Remote. Sens..

[18]  C. Elachi,et al.  Spaceborne Imaging Radar: Geologic and Oceanographic Applications , 1980, Science.

[19]  R. Hunt,et al.  Hydrology, nutrient concentrations, and nutrient yields in nearshore areas of four lakes in northern Wisconsin, 1999-2001 , 2003 .

[20]  Stephen L. Durden,et al.  Modeling and observation of the radar polarization signature of forested areas , 1989 .

[21]  Jörn Hoffmann,et al.  The future of satellite remote sensing in hydrogeology , 2005 .

[22]  L. Hess,et al.  Radar detection of flooding beneath the forest canopy - A review , 1990 .

[23]  Henk M. Haitjema,et al.  Analytic Element Modeling of Groundwater Flow , 1995 .

[24]  Jean-Marie Nicolas,et al.  Topographic SAR interferometry formulation for high-precision DEM generation , 2002, IEEE Trans. Geosci. Remote. Sens..

[25]  D. Krabbenhoft Estimating groundwater exchange with sparkling lake, Wisconsin, 1. The stable isotope mass-balance method , 1990 .

[26]  Jack F. Paris,et al.  Radar remote sensing of forest and wetland ecosystems in the Central American tropics , 1994 .

[27]  K. Webster,et al.  The influence of landscape position on lakes in northern Wisconsin , 1997 .

[28]  M. Anderson,et al.  Estimating groundwater exchange with lakes: 1. The stable isotope mass balance method , 1990 .

[29]  Warit Silavisesrith,et al.  Enhancement of aquifer vulnerability indexing using the analytic-element method , 2003 .

[30]  Mary P. Anderson,et al.  Flowpath Delineation and Ground Water Age, Allequash Basin, Wisconsin , 2003 .

[31]  Laurence C. Smith,et al.  Emerging Applications of Interferometric Synthetic Aperture Radar (InSAR) in Geomorphology and Hydrology , 2002 .

[32]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[33]  Thuy Le Toan,et al.  Dependence of radar backscatter on coniferous forest biomass , 1992, IEEE Trans. Geosci. Remote. Sens..

[34]  A. Roth,et al.  The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar , 2003 .

[35]  Mary P. Anderson,et al.  Improving a Complex Finite‐Difference Ground Water Flow Model Through the Use of an Analytic Element Screening Model , 1998 .

[36]  Frank W. Davis,et al.  Sensitivity of Modeled C- and L-Band Radar Backscatter to Ground Surface Parameters in Loblolly Pine Forest , 1998 .

[37]  David J. Dahlstrom,et al.  Wellhead Protection Area Delineation Using the Analytic Element Method of Ground‐Water Modeling , 1995 .

[38]  Lifeng Luo,et al.  Streamflow and water balance intercomparisons of four land surface models in the North American Land Data Assimilation System Project , 2004 .

[39]  Randal J. Barnes,et al.  High-order line elements in modeling two-dimensional groundwater flow , 1999 .

[40]  Robert Woodruff,et al.  Detecting seasonal flooding cycles in marshes of the Yucatan Peninsula with SIR-C polarimetric radar imagery , 1997 .

[41]  H. Haitjema,et al.  Are Water Tables a Subdued Replica of the Topography? , 2005, Ground water.

[42]  Mahta Moghaddam,et al.  Radar measurement of forested areas during OTTER , 1994 .