Novel function discovery with GeneMANIA: a new integrated resource for gene function prediction in Escherichia coli

MOTIVATION The model bacterium Escherichia coli is among the best studied prokaryotes, yet nearly half of its proteins are still of unknown biological function. This is despite a wealth of available large-scale physical and genetic interaction data. To address this, we extended the GeneMANIA function prediction web application developed for model eukaryotes to support E.coli. RESULTS We integrated 48 distinct E.coli functional interaction datasets and used the GeneMANIA algorithm to produce thousands of novel functional predictions and prioritize genes for further functional assays. Our analysis achieved cross-validation performance comparable to that reported for eukaryotic model organisms, and revealed new functions for previously uncharacterized genes in specific bioprocesses, including components required for cell adhesion, iron-sulphur complex assembly and ribosome biogenesis. The GeneMANIA approach for network-based function prediction provides an innovative new tool for probing mechanisms underlying bacterial bioprocesses. CONTACT gary.bader@utoronto.ca; mohan.babu@uregina.ca SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

[1]  References , 1971 .

[2]  M. O'Connor,et al.  A ribosomal ambiguity mutation in the 530 loop of E. coli 16S rRNA. , 1992, Nucleic acids research.

[3]  P. Watnick,et al.  Genetic approaches to study of biofilms. , 1999, Methods in enzymology.

[4]  S. Oliver Proteomics: Guilt-by-association goes global , 2000, Nature.

[5]  Jill K Thompson,et al.  The protein synthesis inhibitors, oxazolidinones and chloramphenicol, cause extensive translational inaccuracy in vivo. , 2002, Journal of Molecular Biology.

[6]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[7]  T. Baker,et al.  Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. , 2003, Molecular cell.

[8]  S. Kanaya,et al.  Large-scale identification of protein-protein interaction of Escherichia coli K-12. , 2006, Genome research.

[9]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[10]  J. Strahler,et al.  Identification of Novel Escherichia coli Ribosome-Associated Proteins Using Isobaric Tags and Multidimensional Protein Identification Techniques , 2007, Journal of bacteriology.

[11]  J. Collins,et al.  A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics , 2007, Cell.

[12]  David Warde-Farley,et al.  GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function , 2008, Genome Biology.

[13]  Sean R. Collins,et al.  A tool-kit for high-throughput, quantitative analyses of genetic interactions in E. coli , 2008, Nature Methods.

[14]  E. Brown,et al.  Genetic Interaction Screens with Ordered Overexpression and Deletion Clone Sets Implicate the Escherichia coli GTPase YjeQ in Late Ribosome Biogenesis , 2008, Journal of bacteriology.

[15]  Qun Ma,et al.  OmpA influences Escherichia coli biofilm formation by repressing cellulose production through the CpxRA two-component system. , 2009, Environmental microbiology.

[16]  E. Sonnhammer,et al.  Global networks of functional coupling in eukaryotes from comprehensive data integration. , 2009, Genome research.

[17]  A. Emili,et al.  Global Functional Atlas of Escherichia coli Encompassing Previously Uncharacterized Proteins , 2009, PLoS biology.

[18]  Beatriz García Jiménez,et al.  EcID. A database for the inference of functional interactions in E. coli , 2008, Nucleic Acids Res..

[19]  Gary D. Bader,et al.  GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop , 2010, Bioinform..

[20]  A. Emili,et al.  Genetic Interaction Maps in Escherichia coli Reveal Functional Crosstalk among Cell Envelope Biogenesis Pathways , 2011, PLoS genetics.

[21]  N. Krogan,et al.  Phenotypic Landscape of a Bacterial Cell , 2011, Cell.

[22]  A. Emili,et al.  Ribosome-Dependent ATPase Interacts with Conserved Membrane Protein in Escherichia coli to Modulate Protein Synthesis and Oxidative Phosphorylation , 2011, PloS one.

[23]  Damian Szklarczyk,et al.  STRING v9.1: protein-protein interaction networks, with increased coverage and integration , 2012, Nucleic Acids Res..

[24]  Gary D. Bader,et al.  GeneMANIA Prediction Server 2013 Update , 2013, Nucleic Acids Res..

[25]  Gary D. Bader,et al.  Cytoscape App Store , 2013, Bioinform..

[26]  Toshiyuki Yamamoto,et al.  CONFLICT OF INTEREST: None declared. , 2013 .

[27]  A. Emili,et al.  The MoxR ATPase RavA and Its Cofactor ViaA Interact with the NADH:Ubiquinone Oxidoreductase I in Escherichia coli , 2014, PloS one.

[28]  Philip M. Kim,et al.  Quantitative Genome-Wide Genetic Interaction Screens Reveal Global Epistatic Relationships of Protein Complexes in Escherichia coli , 2014, PLoS genetics.

[29]  Gary D. Bader,et al.  Network Assessor: an automated method for quantitative assessment of a network's potential for gene function prediction , 2014, Front. Genet..

[30]  P. Uetz,et al.  The binary protein-protein interaction landscape of Escherichia coli , 2014, Nature Biotechnology.