A numerical investigation of velocity-pressure reduced order models for incompressible flows

This report has two main goals. First, it numerically investigates three velocity-pressure reduced order models (ROMs) for incompressible flows. The proper orthogonal decomposition (POD) is used to generate the modes. One method computes the ROM pressure solely based on the velocity POD modes, whereas the other two ROMs use pressure modes as well. To the best of the authors? knowledge, one of the latter methods is novel. The second goal is to numerically investigate the impact of the snapshot accuracy on the results of the ROMs. Numerical studies are performed on a two-dimensional laminar flow past a circular obstacle. Comparing the results of the ROMs and of the simulations for computing the snapshots, it turns out that the latter results are generally well reproduced by the ROMs. This observation is made for snapshots of different accuracy. Both in terms of reproducing the results of the underlying simulations for obtaining the snapshots and of efficiency, the two ROMs that utilize pressure modes are superior to the ROM that uses only velocity modes.

[1]  A. Quarteroni,et al.  Numerical solution of parametrized Navier–Stokes equations by reduced basis methods , 2007 .

[2]  Gianluigi Rozza,et al.  Model Order Reduction in Fluid Dynamics: Challenges and Perspectives , 2014 .

[3]  Bernd R. Noack,et al.  The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows , 2005, Journal of Fluid Mechanics.

[4]  Belinda B. King,et al.  Reduced Order Controllers for Spatially Distributed Systems via Proper Orthogonal Decomposition , 2004, SIAM J. Sci. Comput..

[5]  G. Rozza,et al.  On the stability of the reduced basis method for Stokes equations in parametrized domains , 2007 .

[6]  Arthur Veldman,et al.  Proper orthogonal decomposition and low-dimensional models for driven cavity flows , 1998 .

[7]  Ramon Codina,et al.  Explicit reduced‐order models for the stabilized finite element approximation of the incompressible Navier–Stokes equations , 2013 .

[8]  Gunar Matthies,et al.  International Journal for Numerical Methods in Fluids Higher-order Finite Element Discretizations in a Benchmark Problem for Incompressible Flows , 2022 .

[9]  M. Gunzburger,et al.  Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data , 2007 .

[10]  V. John,et al.  Adaptive time step control for the incompressible Navier-Stokes equations , 2010 .

[11]  Jean-Luc Guermond,et al.  On the approximation of the unsteady Navier–Stokes equations by finite element projection methods , 1998, Numerische Mathematik.

[12]  Zhu Wang,et al.  Two-level discretizations of nonlinear closure models for proper orthogonal decomposition , 2011, J. Comput. Phys..

[13]  Max Gunzburger,et al.  POD and CVT-based reduced-order modeling of Navier-Stokes flows , 2006 .

[14]  Erik Burman,et al.  Stabilized finite element methods for the generalized Oseen problem , 2007 .

[15]  S. Volkwein,et al.  MODEL REDUCTION USING PROPER ORTHOGONAL DECOMPOSITION , 2008 .

[16]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[17]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[18]  Shangyou Zhang,et al.  A new family of stable mixed finite elements for the 3D Stokes equations , 2004, Math. Comput..

[19]  Traian Iliescu,et al.  Proper orthogonal decomposition closure models for turbulent flows: A numerical comparison , 2011, 1106.3585.

[20]  Alexander Linke,et al.  Collision in a cross-shaped domain - A steady 2d Navier-Stokes example demonstrating the importance of mass conservation in CFD , 2009 .

[21]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[22]  V. John,et al.  A comparison of time-discretization/linearization approaches for the incompressible Navier-Stokes equations , 2006 .

[23]  G. Karniadakis,et al.  A spectral viscosity method for correcting the long-term behavior of POD models , 2004 .

[24]  Zhu Wang,et al.  Variational multiscale proper orthogonal decomposition: Convection-dominated convection-diffusion-reaction equations , 2013, Math. Comput..

[25]  H. Tran,et al.  Modeling and control of physical processes using proper orthogonal decomposition , 2001 .

[26]  Gunar Matthies,et al.  MooNMD – a program package based on mapped finite element methods , 2004 .

[27]  Jean-Antoine Désidéri,et al.  Two stable POD-based approximations to the Navier–Stokes equations , 2000 .

[28]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[29]  Volker John,et al.  On the parameter choice in grad-div stabilization for the Stokes equations , 2014, Adv. Comput. Math..

[30]  Maria Vittoria Salvetti,et al.  Low-dimensional modelling of a confined three-dimensional wake flow , 2006, Journal of Fluid Mechanics.

[31]  Nadine Aubry,et al.  The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.

[32]  Cédric Leblond,et al.  An optimal projection method for the reduced-order modeling of incompressible flows , 2011 .

[33]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.

[34]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .

[35]  L. Sirovich Turbulence and the dynamics of coherent structures. II. Symmetries and transformations , 1987 .

[36]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[37]  Gal Berkooz,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry: Preface , 1996 .

[38]  Earl H. Dowell,et al.  Stabilization of projection-based reduced order models of the Navier–Stokes , 2012 .

[39]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[40]  David Galbally,et al.  Non‐linear model reduction for uncertainty quantification in large‐scale inverse problems , 2009 .

[41]  Ali H. Nayfeh,et al.  On the stability and extension of reduced-order Galerkin models in incompressible flows , 2009 .

[42]  Volker John,et al.  On the parameter choice in grad-div stabilization for incompressible flow problems , 2013 .

[43]  Charles-Henri Bruneau,et al.  Enablers for robust POD models , 2009, J. Comput. Phys..

[44]  Jing Chen,et al.  Mixed Finite Element Formulation and Error Estimates Based on Proper Orthogonal Decomposition for the Nonstationary Navier-Stokes Equations , 2008, SIAM J. Numer. Anal..

[45]  J. Kan A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .

[46]  Razvan Stefanescu,et al.  POD/DEIM nonlinear model order reduction of an ADI implicit shallow water equations model , 2012, J. Comput. Phys..

[47]  J. Weller,et al.  Numerical methods for low‐order modeling of fluid flows based on POD , 2009 .

[48]  Charbel Farhat,et al.  Stabilization of projection‐based reduced‐order models , 2012 .

[49]  Charles-Henri Bruneau,et al.  Low-order modelling of laminar flow regimes past a confined square cylinder , 2004, Journal of Fluid Mechanics.

[50]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[51]  Danny C. Sorensen,et al.  A State Space Error Estimate for POD-DEIM Nonlinear Model Reduction , 2012, SIAM J. Numer. Anal..

[52]  Zhu Wang,et al.  Variational Multiscale Proper Orthogonal Decomposition: Convection-Dominated Convection-Diffusion Equations , 2011, 1103.2729.

[53]  Volker John,et al.  On the efficiency of linearization schemes and coupled multigrid methods in the simulation of a 3D flow around a cylinder , 2006 .

[54]  Gilead Tadmor,et al.  Reduced-Order Modelling for Flow Control , 2013 .