Quadrupole collectivity in the two-body random ensemble

We conduct a systematic investigation of the nuclear collective dynamics that emerges in systems with random two-body interactions. We explore the development of the mean field and study its geometry. We investigate multipole collectivities in the many-body spectra and their dependence on the underlying two-body interaction Hamiltonian. The quadrupole-quadrupole interaction component appears to be dynamically dominating in two-body random ensembles. This quadrupole coherence leads to rotational spectral features and thus suggests the formation of the deformed mean-field of a specific geometry.

[1]  M. Horoi,et al.  Random interactions explore the nuclear landscape: Predominance of prolate nuclear deformations , 2010 .

[2]  J. Allmond,et al.  Triaxial rotor model description of E2 properties in {sup 186,188,190,192}Os , 2008 .

[3]  A. Volya,et al.  Nuclear Schiff moment and soft vibrational modes , 2008, 0803.2915.

[4]  A. Volya Emergence of symmetry from random n-body interactions. , 2007, Physical Review Letters.

[5]  H. Nam,et al.  New puzzle for many-body systems with random two-body interactions , 2007 .

[6]  H. Weidenmueller,et al.  Colloquium: Random matrices and chaos in nuclear spectra , 2007, nucl-th/0701092.

[7]  D. Rowe,et al.  Coupled SU(3) models of rotational states in nuclei and quasi-dynamical symmetry , 2006 .

[8]  Y. M. Zhao,et al.  Regularities of many-body systems interacting by a two-body random ensemble , 2003, nucl-th/0311050.

[9]  A. Volya,et al.  Nuclear structure, random interactions and mesoscopic physics , 2003, nucl-th/0309071.

[10]  A. Frank,et al.  Geometry of random interactions , 2002, nucl-th/0301061.

[11]  Y. Shimizu,et al.  Origin of Prolate Dominance of Nuclear Deformation , 2002 .

[12]  A. Volya Interplay of pairing and multipole interactions in a simple model , 2001, nucl-th/0110067.

[13]  A. Volya,et al.  Do we understand the role of incoherent interactions in many-body physics? , 2001 .

[14]  A. Volya,et al.  Geometric chaoticity leads to ordered spectra for randomly interacting fermions. , 2000, Physical review letters.

[15]  Frank,et al.  Band structure from random interactions , 1999, Physical review letters.

[16]  G. Bertsch,et al.  ORDERLY SPECTRA FROM RANDOM INTERACTIONS , 1998, nucl-th/9802066.

[17]  D. Rowe,et al.  Why are deformed nuclei prolate , 1990 .

[18]  A. Arima,et al.  The Interacting Boson Model: The interacting boson model-2 , 1987 .

[19]  K. Goeke,et al.  Prolate-oblate energy difference and shape variation in the f − p shell , 1976 .

[20]  A. Davydov,et al.  Rotational states in even atomic nuclei , 1958 .

[21]  J. P. Elliott,et al.  Collective motion in the nuclear shell model II. The introduction of intrinsic wave-functions , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.