Multi-dimensional Modeling and Simulation of Semiconductor Nanophotonic Devices

Self-consistent modeling and multi-dimensional simulation of semiconductor nanophotonic devices is an important tool in the development of future integrated light sources and quantum devices. Simulations can guide important technological decisions by revealing performance bottlenecks in new device concepts, contribute to their understanding and help to theoretically explore their optimization potential. The efficient implementation of multi-dimensional numerical simulations for computer-aided design tasks requires sophisticated numerical methods and modeling techniques. We review recent advances in device-scale modeling of quantum dot based single-photon sources and laser diodes by self-consistently coupling the optical Maxwell equations with semi-classical carrier transport models using semi-classical and fully quantum mechanical descriptions of the optically active region, respectively. For the simulation of realistic devices with complex, multi-dimensional geometries, we have developed a novel hp-adaptive finite element approach for the optical Maxwell equations, using mixed meshes adapted to the multi-scale properties of the photonic structures. For electrically driven devices, we introduced novel discretization and parameter-embedding techniques to solve the drift-diffusion system for strongly degenerate semiconductors at cryogenic temperatures. Our methodical advances are demonstrated on various applications, including vertical-cavity surface-emitting lasers, grating couplers and single-photon sources.

[1]  P. Michler Single Semiconductor Quantum Dots , 2009 .

[2]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[3]  Toralf Scharf,et al.  Design rules for customizable optical materials based on nanocomposites , 2018, Optical Materials Express.

[4]  M. Kuntz,et al.  Coulomb Damped Relaxation Oscillations in Semiconductor Quantum Dot Lasers , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  S. Selberherr MOS device modeling at 77 K , 1989 .

[6]  S. Burger,et al.  Integrated optical fiber grating coupler on SOI for the excitation of several higher order fiber modes , 2014, 2014 The European Conference on Optical Communication (ECOC).

[7]  Karl Leo,et al.  Feel the Heat: Nonlinear Electrothermal Feedback in Organic LEDs , 2013 .

[8]  Jan Pomplun,et al.  Thermo-optical simulation of high-power diode lasers , 2012, Other Conferences.

[9]  Tawee Tanbun-Ek,et al.  Vertical cavity surface emitting laser diodes , 1990, Photonics West - Lasers and Applications in Science and Engineering.

[10]  Rudiger Quay,et al.  Analysis and Simulation of Heterostructure Devices , 2004 .

[11]  Karl Leo,et al.  Self-heating effects in organic semiconductor crossbar structures with small active area , 2012 .

[12]  N. Moiseyev,et al.  Non-Hermitian Quantum Mechanics: Frontmatter , 2011 .

[13]  Franco Brezzi,et al.  Numerical simulation of semiconductor devices , 1989 .

[14]  K. Gärtner,et al.  On the Discretization of van Roosbroeck’s Equations with Magnetic Field , 1996 .

[15]  ANG,et al.  Benchmarking five numerical simulation techniques for computing resonance wavelengths and quality factors in photonic crystal membrane line defect cavities , 2018 .

[16]  Wolfgang Fichtner,et al.  A comprehensive VCSEL device simulator , 2003 .

[17]  S. Burger,et al.  Nanophotonic-Enhanced Two-Photon-Excited Photoluminescence of Perovskite Quantum Dots , 2018, ACS Photonics.

[18]  D. Englund,et al.  Solid-state single-photon emitters , 2016, Nature Photonics.

[19]  Thomas Koprucki,et al.  A hybrid quantum-classical modeling approach for electrically driven quantum light sources , 2018, OPTO.

[20]  Thomas Koprucki,et al.  On thermodynamic consistency of a Scharfetter–Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement , 2014 .

[21]  H. Spohn Entropy production for quantum dynamical semigroups , 1978 .

[22]  Uwe Bandelow,et al.  Fabry-Perot Lasers: Thermodynamics-Based Modeling , 2005 .

[23]  L. Zschiedrich,et al.  Method for direct coupling of a semiconductor quantum dot to an optical fiber for single-photon source applications. , 2019, Optics express.

[24]  Thomas Koprucki,et al.  Numerical simulation of carrier transport in semiconductor devices at cryogenic temperatures , 2016 .

[25]  Locally Enhanced and Tunable Optical Chirality in Helical Metamaterials , 2016, 1611.07748.

[26]  Philipp Gutsche,et al.  Time-harmonic optical chirality in inhomogeneous space , 2016, SPIE OPTO.

[27]  A. Mielke On thermodynamical couplings of quantum mechanics and macroscopic systems , 2014 .

[28]  L. Zschiedrich,et al.  Numerical optimization of the extraction efficiency of a quantum-dot based single-photon emitter into a single-mode fiber. , 2018, Optics express.

[29]  Ronald Holzlöhner,et al.  Efficient optimization of hollow-core photonic crystal fiber design using the finite-element method , 2006 .

[30]  Stephan Reitzenstein,et al.  Resonance fluorescence of a site-controlled quantum dot realized by the buried-stressor growth technique , 2017 .

[31]  Nikolai N. Ledentsov,et al.  Engineering of optical modes in vertical-cavity microresonators by aperture placement: applications to single-mode and near-field lasers , 2015, Photonics West - Optoelectronic Materials and Devices.

[32]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[33]  S. Burger,et al.  Finite element simulation of the optical modes of semiconductor lasers , 2010, 1011.6244.

[35]  G Demésy,et al.  Quasinormal mode solvers for resonators with dispersive materials. , 2018, Journal of the Optical Society of America. A, Optics, image science, and vision.

[36]  J. S. Blakemore Approximations for Fermi-Dirac integrals, especially the function F12(η) used to describe electron density in a semiconductor , 1982 .

[37]  P. Lodahl,et al.  Interfacing single photons and single quantum dots with photonic nanostructures , 2013, 1312.1079.

[38]  Numerical simulation of SiGe HBT's at cryogenic temperatures , 1994 .

[39]  An Equation for the Amplitudes of the Modes in Semiconductor Lasers , 1994 .

[40]  California,et al.  Reconstruction of the wave functions of coupled nanoscopic emitters using a coherent optical technique , 2012, 1201.1765.

[41]  Thomas Koprucki,et al.  Highly accurate quadrature-based Scharfetter-Gummel schemes for charge transport in degenerate semiconductors , 2018, Comput. Phys. Commun..

[42]  R. Baets,et al.  Compact efficient broadband grating coupler for silicon-on-insulator waveguides. , 2004, Optics letters.

[43]  H. Gummel A self-consistent iterative scheme for one-dimensional steady state transistor calculations , 1964 .

[44]  Jelena Vučković,et al.  Engineered quantum dot single-photon sources , 2012, Reports on progress in physics. Physical Society.

[45]  Thomas Koprucki,et al.  Drift-Diffusion Models , 2017 .

[46]  U. Lindefelt Heat generation in semiconductor devices , 1994 .

[47]  A. Mielke,et al.  Mathematical Modeling of Semiconductors: From Quantum Mechanics to Devices , 2019, CIM Series in Mathematical Sciences.

[48]  On the Iterative Solution of van Roosbroeck's Equations , 1992 .

[49]  Peter A. Markowich,et al.  The Stationary Semiconductor Device Equations. , 1987 .

[50]  S. Burger,et al.  Directional Emission of a Deterministically Fabricated Quantum Dot–Bragg Reflection Multimode Waveguide System , 2019, ACS Photonics.

[51]  H. Gummel,et al.  Large-signal analysis of a silicon Read diode oscillator , 1969 .

[52]  L. Zschiedrich,et al.  Modal analysis for nanoplasmonics with nonlocal material properties , 2019, Physical Review B.

[53]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[54]  R. Baets,et al.  Comparison of optical VCSEL models on the simulation of oxide-confined devices , 2001 .

[55]  Lars Zimmermann,et al.  VCSEL-Based Silicon Photonic Interconnect Technologies , 2020 .

[56]  L. Zschiedrich,et al.  Heuristic Modeling of Strong Coupling in Plasmonic Resonators , 2018, ACS Photonics.

[57]  L. Zschiedrich,et al.  Hp-finite element method for simulating light scattering from complex 3D structures , 2015, Advanced Lithography.

[58]  S. M. Sze Physics of semiconductor devices /2nd edition/ , 1981 .

[59]  Thomas Koprucki,et al.  Computational and analytical comparison of flux discretizations for the semiconductor device equations beyond Boltzmann statistics , 2016, J. Comput. Phys..

[60]  G. Sęk,et al.  Enhanced photon-extraction efficiency from InGaAs/GaAs quantum dots in deterministic photonic structures at 1.3 μm fabricated by in-situ electron-beam lithography , 2018, AIP Advances.

[61]  K. Hess,et al.  Simulation of carrier transport and nonlinearities in quantum-well laser diodes , 1998 .

[62]  Simulation of quantum dot based single-photon sources using the Schrödinger-Poisson-Drift-Diffusion-Lindblad system , 2019, 2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD).

[63]  A. Pimenov,et al.  Coherent and Incoherent Dynamics in Quantum Dots and Nanophotonic Devices , 2020 .

[64]  Frank Jahnke,et al.  Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers , 2004 .

[65]  Il-Sug Chung,et al.  Numerical methods for modeling photonic-crystal VCSELs. , 2010, Optics express.

[66]  A. Strittmatter,et al.  Lateral positioning of InGaAs quantum dots using a buried stressor , 2012 .

[67]  K. Iga,et al.  Surface-emitting laser-its birth and generation of new optoelectronics field , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[68]  Marita Thomas,et al.  Robustness analysis of a device concept for edge-emitting lasers based on strained germanium , 2016 .

[69]  S. Reitzenstein,et al.  Bright Single-Photon Sources Based on Anti-Reflection Coated Deterministic Quantum Dot Microlenses , 2015 .

[70]  Frank Schmidt,et al.  Adaptive finite element method for simulation of optical nano structures , 2007, 0711.2149.

[71]  Dieter Bimberg,et al.  Quantum dots: promises and accomplishments , 2011 .

[72]  K. Ng,et al.  The Physics of Semiconductor Devices , 2019, Springer Proceedings in Physics.

[73]  S. Reitzenstein,et al.  Electrically driven single photon source based on a site-controlled quantum dot with self-aligned cu , 2012 .

[74]  A. Knorr,et al.  Modeling of quantum dot lasers with microscopic treatment of Coulomb effects , 2011 .

[75]  S. Reitzenstein,et al.  Stressor-Induced Site Control of Quantum Dots for Single-Photon Sources , 2020 .

[76]  J. Mørk,et al.  One- and two-phonon capture processes in quantum dots , 2002 .

[77]  S. Burger,et al.  Design and numerical optimization of an easy-to-fabricate photon-to-plasmon coupler for quantum plasmonics , 2013 .

[78]  R. Coehoorn,et al.  Effect of Gaussian disorder on the voltage dependence of the current density in sandwich-type devices based on organic semiconductors , 2008 .

[79]  James A. Lott,et al.  Validation of quasi-normal modes and of constant-flux modes for computing fundamental resonances of VCSELs , 2018, Photonics Europe.

[80]  Carsten Rockstuhl,et al.  Benchmarking Five Global Optimization Approaches for Nano-optical Shape Optimization and Parameter Reconstruction , 2018, ACS Photonics.

[81]  M. Abuelma'atti Approximations for fermi-dirac integrals Fj(x) , 1994 .

[82]  Pallab Bhattacharya,et al.  Quantum-Dot Optoelectronic Devices , 2007, Proceedings of the IEEE.

[83]  Markus Kantner,et al.  Generalized Scharfetter-Gummel schemes for electro-thermal transport in degenerate semiconductors using the Kelvin formula for the Seebeck coefficient , 2019, J. Comput. Phys..

[84]  F Schmidt,et al.  Dependencies of micro-pillar cavity quality factors calculated with finite element methods. , 2009, Optics express.

[85]  P. T. Leung,et al.  Quasinormal-mode expansion for waves in open systems , 1998 .

[86]  W. V. Roosbroeck Theory of the flow of electrons and holes in germanium and other semiconductors , 1950 .

[87]  Peter Michler,et al.  Quantum Dots for Quantum Information Technologies , 2017 .

[88]  H. Gajewski,et al.  Thermodynamic design of energy models of semiconductor devices , 2002 .

[89]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[90]  A. Witzig Modeling the optical processes in semiconductor lasers , 2002 .

[91]  Frank Schmidt,et al.  Finite element simulation of optical modes in VCSELs , 2011, 2011 Numerical Simulation of Optoelectronic Devices.

[92]  Stephan W Koch,et al.  Quantum theory of the optical and electronic properties of semiconductors, fifth edition , 2009 .

[93]  S. Burger,et al.  Guiding Properties of Chirped Photonic Crystal Fibers , 2009, Journal of Lightwave Technology.

[94]  L. Zschiedrich,et al.  Deterministic Quantum Devices for Optical Quantum Communication , 2020 .

[95]  G. A. Baraff,et al.  Nonadiabatic semiconductor laser rate equations for the large-signal, rapid-modulation regime , 2000 .

[96]  K. Gärtner,et al.  Boundary conforming Delaunay mesh generation , 2010 .

[97]  Thomas Koprucki,et al.  Hybrid quantum-classical modeling of quantum dot devices , 2017, 1709.10481.

[98]  Viktoriia E. Babicheva,et al.  Localized surface plasmon modes in a system of two interacting metallic cylinders , 2012, 1204.5773.

[99]  A. Strittmatter,et al.  Efficient Current Injection Into Single Quantum Dots Through Oxide-Confined p-n-Diodes , 2015, IEEE Transactions on Electron Devices.

[100]  I. Sagnes,et al.  Near-optimal single-photon sources in the solid state , 2015, Nature Photonics.

[101]  Bernd Witzigmann,et al.  Unified simulation of transport and luminescence in optoelectronic nanostructures , 2008 .

[102]  G. Erbert,et al.  Theoretical and experimental analysis of the lateral modes of high-power broad-area lasers , 2011, 2011 Numerical Simulation of Optoelectronic Devices.

[103]  Klaus Gärtner,et al.  Discretization scheme for drift-diffusion equations with strong diffusion enhancement , 2012 .

[104]  Thomas Pertsch,et al.  Dispersion-engineered nanocomposites enable achromatic diffractive optical elements , 2019, Optica.

[105]  Nikolay Ledentsov,et al.  Single-Mode Vertical Cavity Surface Emitting Laser via Oxide-Aperture-Engineering of Leakage of High-Order Transverse Modes , 2014, IEEE Journal of Quantum Electronics.

[106]  D. Griffiths Introduction to Electrodynamics , 2017 .

[107]  William L. Barnes,et al.  Solid-state single photon sources: light collection strategies , 2002 .

[108]  P. Mathé,et al.  Influence of the carrier reservoir dimensionality on electron-electron scattering in quantum dot materials , 2013 .

[109]  Marc Duruflé,et al.  High-order optimal edge elements for pyramids, prisms and hexahedra , 2013, J. Comput. Phys..

[110]  Markus Kantner Hybrid modeling of quantum light emitting diodes: self-consistent coupling of drift-diffusion, Schrödinger-Poisson, and quantum master equations , 2019, OPTO.

[111]  K. Petermann,et al.  Numerical simulation of grating couplers for mode multiplexed systems , 2014, Photonics West - Optoelectronic Materials and Devices.

[112]  Oliver Benson,et al.  Riesz-projection-based theory of light-matter interaction in dispersive nanoresonators , 2018, Physical Review A.

[113]  Jürgen Fuhrmann,et al.  Comparison and numerical treatment of generalised Nernst-Planck models , 2015, Comput. Phys. Commun..

[114]  Gerhard K. M. Wachutka,et al.  Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[115]  W. Chow,et al.  Theory of semiconductor quantum-dot laser dynamics , 2005, IEEE Journal of Quantum Electronics.

[116]  Dissipative Quantum Mechanics Using GENERIC , 2013 .

[117]  Alfred Forchel,et al.  Quantum dot micropillars , 2010 .

[118]  Yeongho Kim,et al.  Submonolayer Quantum Dots for Optoelectronic Devices , 2018, Journal of the Korean Physical Society.

[119]  Eckehard Schöll,et al.  Quantum-Dot Lasers—Desynchronized Nonlinear Dynamics of Electrons and Holes , 2009 .

[120]  K. Hess Advanced Theory of Semiconductor Devices , 1999 .

[121]  S. Burger,et al.  Enhanced photon-extraction efficiency from deterministic quantum-dot microlenses , 2013, 1312.6298.

[122]  K. Petermann,et al.  A Two-Dimensional Fiber Grating Coupler on SOI for Mode Division Multiplexing , 2016, IEEE Photonics Technology Letters.

[123]  S. Burger,et al.  Numerical Investigation of Light Emission from Quantum Dots Embedded into On‐Chip, Low‐Index‐Contrast Optical Waveguides , 2019, physica status solidi (b).

[124]  A. Wilms Coulomb induced interplay of localized and reservoir carriers in semiconductor quantum dots , 2013 .

[125]  N. Moiseyev,et al.  Non-Hermitian Quantum Mechanics , 2011 .

[127]  A. Strittmatter,et al.  Site‐controlled quantum dot growth on buried oxide stressor layers , 2012 .

[128]  Ivo Babuška,et al.  Error estimates for the combinedh andp versions of the finite element method , 1981 .

[129]  Dietmar Schroeder,et al.  Modelling of Interface Carrier Transport for Device Simulation , 1994 .

[130]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[131]  A. Mielke,et al.  An Entropic Gradient Structure for Lindblad Equations and Couplings of Quantum Systems to Macroscopic Models , 2016, 1609.05765.

[132]  S. Guha,et al.  Modeling of Edge-Emitting Lasers Based on Tensile Strained Germanium Microstrips , 2015, IEEE Photonics Journal.

[133]  M. Kantner Modeling and simulation of electrically driven quantum dot based single-photon sources , 2018 .

[134]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. I. Development of a general formalism , 1997 .

[135]  F Schmidt,et al.  Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography , 2015, Nature Communications.

[136]  Sven Burger,et al.  Deterministic Integration of Quantum Dots into on-Chip Multimode Interference Beamsplitters Using in Situ Electron Beam Lithography. , 2017, Nano letters.

[137]  Alexander Mielke,et al.  A gradient structure for reaction–diffusion systems and for energy-drift-diffusion systems , 2011 .

[138]  W. Chow,et al.  On the Physics of Semiconductor Quantum Dots for Applications in Lasers and Quantum Optics. , 2013 .

[139]  Marianne Bessemoulin-Chatard,et al.  A finite volume scheme for convection–diffusion equations with nonlinear diffusion derived from the Scharfetter–Gummel scheme , 2010, Numerische Mathematik.

[140]  M. Kuntz,et al.  Theory of relaxation oscillations in semiconductor quantum dot lasers , 2006 .

[141]  C. Rockstuhl,et al.  Insights into directional scattering: from coupled dipoles to asymmetric dimer nanoantennas. , 2016, Optics express.

[142]  S. Burger,et al.  Benchmarking five numerical simulation techniques for computing resonance wavelengths and quality factors in photonic crystal membrane line defect cavities. , 2017, Optics express.

[143]  S. Burger,et al.  Simulations of high-Q optical nanocavities with a gradual 1D bandgap. , 2013, Optics express.