Smooth Summaries of Persistence Diagrams and Texture Classification

Topological data analysis (TDA) is a rising field in the intersection of mathematics, statistics, and computer science/data science. Persistent homology is one of the most commonly used tools in TDA, in part because it can be easily visualized in the form of a persistence diagram. However, performing machine learning algorithms directly on persistence diagrams is a challenging task, and so a number of summaries have been proposed which transform persistence diagrams into vectors or functions. Many of these summaries fall into the persistence curve framework developed by Chung and Lawson. We extend this framework and introduce new class of smooth persistence curves which we call Gaussian persistence curves. We investigate the statistical properties of Gaussian persistence curves and apply them to texture datasets: UIUCTex and KTH. Our classification results on these texture datasets perform competitively with the current state-of-arts methods in TDA.

[1]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[2]  Ulrich Bauer,et al.  A stable multi-scale kernel for topological machine learning , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Yu-Min Chung,et al.  Persistence Curves: A canonical framework for summarizing persistence diagrams , 2019, Advances in Computational Mathematics.

[4]  Dan Yasaki,et al.  The space of persistence diagrams fails to have Yu's property A , 2019 .

[5]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[6]  M. Kosorok Introduction to Empirical Processes and Semiparametric Inference , 2008 .

[7]  Steve Oudot,et al.  Sliced Wasserstein Kernel for Persistence Diagrams , 2017, ICML.

[8]  H. Edelsbrunner,et al.  Topological data analysis , 2011 .

[9]  Brittany Terese Fasy,et al.  Functional summaries of persistence diagrams , 2018, Journal of Applied and Computational Topology.

[10]  Alexander Wagner,et al.  Embeddings of persistence diagrams into Hilbert spaces , 2019, Journal of Applied and Computational Topology.

[11]  S. Mukherjee,et al.  Probability measures on the space of persistence diagrams , 2011 .

[12]  Frédéric Chazal,et al.  An Introduction to Topological Data Analysis: Fundamental and Practical Aspects for Data Scientists , 2017, Frontiers in Artificial Intelligence.

[13]  Gunnar E. Carlsson,et al.  Topological pattern recognition for point cloud data* , 2014, Acta Numerica.

[14]  Clifford Smyth,et al.  Topological approaches to skin disease image analysis , 2018, 2018 IEEE International Conference on Big Data (Big Data).

[15]  Megan S. Ryerson,et al.  Topological data analysis for aviation applications , 2019, Transportation Research Part E: Logistics and Transportation Review.

[16]  Harald Oberhauser,et al.  Persistence Paths and Signature Features in Topological Data Analysis , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Firas A. Khasawneh,et al.  Adaptive Partitioning for Template Functions on Persistence Diagrams , 2019, 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA).

[18]  Maks Ovsjanikov,et al.  Persistence-Based Structural Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Larry Wasserman,et al.  Efficient Topological Layer based on Persistent Landscapes , 2020, ArXiv.

[20]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[21]  Rocío González-Díaz,et al.  A new entropy based summary function for topological data analysis , 2018, Electron. Notes Discret. Math..

[22]  Frédéric Chazal,et al.  Stochastic Convergence of Persistence Landscapes and Silhouettes , 2013, J. Comput. Geom..

[23]  Rocío González-Díaz,et al.  On the stability of persistent entropy and new summary functions for TDA , 2018, Pattern Recognit..

[24]  Frédéric Chazal,et al.  On the Bootstrap for Persistence Diagrams and Landscapes , 2013, ArXiv.

[25]  Christopher J. Tralie,et al.  Ripser.py: A Lean Persistent Homology Library for Python , 2018, J. Open Source Softw..

[26]  Henry Adams,et al.  Persistence Images: A Stable Vector Representation of Persistent Homology , 2015, J. Mach. Learn. Res..

[27]  L. Nanni,et al.  An ensemble of classifiers based on different texture descriptors for texture classification , 2013 .

[28]  I. Voineagu,et al.  Persistent homology analysis of brain transcriptome data in autism , 2019, Journal of the Royal Society Interface.

[29]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[30]  Sayan Mukherjee,et al.  Functional Data Analysis using a Topological Summary Statistic: the Smooth Euler Characteristic Transform , 2016 .

[31]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[32]  Wei Guo,et al.  Sparse-TDA: Sparse Realization of Topological Data Analysis for Multi-Way Classification , 2018, IEEE Transactions on Knowledge and Data Engineering.

[33]  Mario Fritz,et al.  On the Significance of Real-World Conditions for Material Classification , 2004, ECCV.

[34]  Jose A. Perea,et al.  A Klein-Bottle-Based Dictionary for Texture Representation , 2014, International Journal of Computer Vision.

[35]  Pawel Dlotko,et al.  Persistence Bag-of-Words for Topological Data Analysis , 2018, IJCAI.

[36]  Heike Leitte,et al.  Topological Machine Learning with Persistence Indicator Functions , 2019, Mathematics and Visualization.

[37]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[38]  Chi Zhou,et al.  Persistence B-Spline Grids: Stable Vector Representation of Persistence Diagrams Based on Data Fitting , 2019, ArXiv.

[39]  Chul Moon,et al.  Persistence Terrace for Topological Inference of Point Cloud Data , 2017, Journal of Computational and Graphical Statistics.

[40]  Kenji Fukumizu,et al.  Persistence weighted Gaussian kernel for topological data analysis , 2016, ICML.