NEMS-Based Infrared Metamaterial via Tuning Nanocantilevers Within Complementary Split Ring Resonators

Dynamic control of the electromagnetic properties of metamaterials requires wide modulation bandwidth. Tunable metamaterials with large tunability and fast speed are thus highly desirable. Due to the small dimensions, subwavelength meta-atoms or resonant elements that constitute a metamaterial in the mid-to-near-infrared (IR) wavelength range are often not easy to be tuned at a high rate of several tens of megahertz (MHz). Here, we report on a nanoelectromechanical systems (NEMS)-based tunable IR metamaterial realized by unique embedding of nanocantilevers into complementary split ring resonators (c-SRRs) suspended over individual wells. The optical field confined in the air gap of the c-SRR is strongly influenced by electrostatically induced mechanical deflection of the nanocantilever, thus modulating the reflection spectrum of the metamaterial. With the easy-to-implement tunable meta-atom design, the IR metamaterial with 800-nm-long cantilevers provides an ultrahigh mechanical modulation frequency of 32.26 MHz for optical signal modulation at a wavelength of 2.1 $\mu \text{m}$ , and is rather easy to manufacture and operate. We envision a compact, efficient, and high-speed electrooptic modulation platform in the IR region using this NEMS tunable metamaterial technology. [2017–0012]

[1]  W. Miller,et al.  A closed-form model for the pull-in voltage of electrostatically actuated cantilever beams , 2005 .

[2]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[3]  Ai Qun Liu,et al.  Switchable Magnetic Metamaterials Using Micromachining Processes , 2011, Advanced materials.

[4]  N. Zheludev,et al.  Reconfigurable nanomechanical photonic metamaterials. , 2016, Nature nanotechnology.

[5]  Carsten Rockstuhl,et al.  On the reinterpretation of resonances in split-ring-resonators at normal incidence. , 2006, Optics express.

[6]  Luciano Vicari,et al.  Optical Applications of Liquid Crystals , 2003 .

[7]  Nikolay I. Zheludev,et al.  Nano-optomechanical nonlinear dielectric metamaterials , 2015, 1508.00995.

[8]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[9]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[10]  Liu Litian,et al.  Characterization of Uncooled Poly SiGe Microbolometer for Infrared Detection , 2003 .

[11]  Han Yan,et al.  Electrostatic pull-in instability in MEMS/NEMS: A review , 2014 .

[12]  Jiming Song,et al.  From Flexible and Stretchable Meta-Atom to Metamaterial: A Wearable Microwave Meta-Skin with Tunable Frequency Selective and Cloaking Effects , 2016, Scientific Reports.

[13]  O. Mitomi,et al.  Millimeter-wave Ti:LiNbO/sub 3/ optical modulators , 1998 .

[14]  G. Wurtz,et al.  Plasmonic nanorod metamaterials for biosensing. , 2009, Nature materials.

[15]  Nikolay I. Zheludev,et al.  Reconfigurable photonic metamaterials , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[16]  Ekmel Ozbay,et al.  Optically implemented broadband blueshift switch in the terahertz regime. , 2011, Physical review letters.

[17]  I. Smolyaninov,et al.  Magnifying Superlens in the Visible Frequency Range , 2006, Science.

[18]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[19]  Qian-jin Wang,et al.  Asymmetric transmission and optical rotation of a quasi-3D asymmetric metallic structure. , 2014, Optics letters.

[20]  Fritz Keilmann,et al.  Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide , 2008 .

[21]  Carsten Rockstuhl,et al.  Resonances in complementary metamaterials and nanoapertures. , 2008, Optics express.

[22]  Willie J. Padilla,et al.  Dynamic Manipulation of Infrared Radiation with MEMS Metamaterials , 2013 .

[23]  Ekmel Ozbay,et al.  Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture. , 2009, Physical review letters.

[24]  Eric Plum,et al.  Giant Nonlinearity of an Optically Reconfigurable Plasmonic Metamaterial , 2016, Advanced materials.

[25]  Chengkuo Lee,et al.  Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array , 2014, Light: Science & Applications.

[26]  Huawei Jiang,et al.  Tunable Optical Nanoantennas Incorporating Bowtie Nanoantenna Arrays with Stimuli-Responsive Polymer , 2015, Scientific Reports.

[27]  T. Bourouina,et al.  Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy , 2012, Nature Communications.

[28]  Xiaoguang Zhao,et al.  Voltage-tunable dual-layer terahertz metamaterials , 2016, Microsystems & Nanoengineering.

[29]  Liang Dong,et al.  Electrically Tunable Quasi-3-D Mushroom Plasmonic Crystal , 2016, Journal of Lightwave Technology.

[30]  Nikolay I. Zheludev,et al.  A magneto-electro-optical effect in a plasmonic nanowire material , 2015, Nature Communications.

[31]  N. Zheludev,et al.  From metamaterials to metadevices. , 2012, Nature materials.

[32]  Willie J Padilla,et al.  Complementary planar terahertz metamaterials. , 2007, Optics express.

[33]  David R. Smith,et al.  Electronically reconfigurable metal-on-silicon metamaterial , 2012 .

[34]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[35]  Guo-Qiang Lo,et al.  A Micromachined Reconfigurable Metamaterial via Reconfiguration of Asymmetric Split‐Ring Resonators , 2011 .

[36]  Jiming Song,et al.  Optical bound states in slotted high-contrast gratings , 2016 .

[37]  Koray Aydin,et al.  Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing. , 2011, ACS nano.

[38]  David Shrekenhamer,et al.  Liquid crystal tunable metamaterial absorber. , 2012, Physical review letters.

[39]  H. Bernien,et al.  Active terahertz nanoantennas based on VO2 phase transition. , 2010, Nano letters.

[40]  Hu Tao,et al.  Reconfigurable terahertz metamaterials. , 2009, Physical review letters.

[41]  L. Wong,et al.  Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing. , 2011, Nano letters.

[42]  Chengkuo Lee,et al.  Micro-electro-mechanically switchable near infrared complementary metamaterial absorber , 2014 .

[43]  M. Hentschel,et al.  Babinet to the half: coupling of solid and inverse plasmonic structures. , 2013, Nano letters.

[44]  Vladimir M. Shalaev,et al.  Tunable magnetic response of metamaterials , 2009 .

[45]  F. García-Vidal,et al.  Transmission Resonances on Metallic Gratings with Very Narrow Slits , 1999, cond-mat/9904365.

[46]  Yuri S. Kivshar,et al.  Tunable fishnet metamaterials infiltrated by liquid crystals , 2010, 1004.0802.

[47]  Chengkuo Lee,et al.  Electrothermally actuated microelectromechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics , 2014 .

[48]  Eric Plum,et al.  An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. , 2013, Nature nanotechnology.

[49]  N. Pałka,et al.  Liquid crystal-tunable metamaterial absorber for THz frequency range , 2013, 2013 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics.