Broadband single molecule SERS detection designed by warped optical spaces

[1]  Wen-bo Wei,et al.  Fabrication of Large-Area Arrays of Vertically Aligned Gold Nanorods. , 2018, Nano letters.

[2]  De‐Yin Wu,et al.  Revealing the Role of Interfacial Properties on Catalytic Behaviors by in Situ Surface-Enhanced Raman Spectroscopy. , 2017, Journal of the American Chemical Society.

[3]  Jian-Feng Li,et al.  In situ dynamic tracking of heterogeneous nanocatalytic processes by shell-isolated nanoparticle-enhanced Raman spectroscopy , 2017, Nature Communications.

[4]  A. Fratalocchi,et al.  Enhanced Solar‐to‐Hydrogen Generation with Broadband Epsilon‐Near‐Zero Nanostructured Photocatalysts , 2017, Advanced materials.

[5]  Shujie Li,et al.  Large-Area Au-Nanoparticle-Functionalized Si Nanorod Arrays for Spatially Uniform Surface-Enhanced Raman Spectroscopy. , 2017, ACS nano.

[6]  S. Bykov,et al.  Aluminum Film-Over-Nanosphere Substrates for Deep-UV Surface-Enhanced Resonance Raman Spectroscopy. , 2016, Nano letters.

[7]  Federico Capasso,et al.  Scalable, ultra-resistant structural colors based on network metamaterials , 2016, Light: Science & Applications.

[8]  Siying Tang,et al.  Evaporative Self‐Assembly of Gold Nanorods into Macroscopic 3D Plasmonic Superlattice Arrays , 2016, Advanced materials.

[9]  Jian-Feng Li,et al.  "Smart" Ag Nanostructures for Plasmon-Enhanced Spectroscopies. , 2015, Journal of the American Chemical Society.

[10]  L. Liz‐Marzán,et al.  Templated Growth of Surface Enhanced Raman Scattering-Active Branched Gold Nanoparticles within Radial Mesoporous Silica Shells , 2015, ACS nano.

[11]  Mohsen Rahmani,et al.  Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion , 2015, Nature Communications.

[12]  S. Fan,et al.  Fano resonance boosted cascaded optical field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application , 2015, Light: Science & Applications.

[13]  P. Pikhitsa,et al.  Hotspot‐Engineered 3D Multipetal Flower Assemblies for Surface‐Enhanced Raman Spectroscopy , 2014, Advanced materials.

[14]  Peter Nordlander,et al.  Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance , 2014, Nature Communications.

[15]  P. Patra,et al.  Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles , 2014, Nature Communications.

[16]  Y. Miao,et al.  Plasmonic liquid marbles: a miniature substrate-less SERS platform for quantitative and multiplex ultratrace molecular detection. , 2014, Angewandte Chemie.

[17]  S. Schlücker Surface-enhanced Raman spectroscopy: concepts and chemical applications. , 2014, Angewandte Chemie.

[18]  R. Krahne,et al.  3D Nanostar Dimers with a Sub‐10‐nm Gap for Single‐/Few‐Molecule Surface‐Enhanced Raman Scattering , 2014, Advanced materials.

[19]  Jinhuai Liu,et al.  Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix. , 2014, Journal of the American Chemical Society.

[20]  Shui-Tong Lee,et al.  Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection. , 2013, Nano letters.

[21]  Wei Zhang,et al.  Ultra‐Sensitive Graphene‐Plasmonic Hybrid Platform for Label‐Free Detection , 2013, Advanced materials.

[22]  Yu Luo,et al.  Capturing photons with transformation optics , 2013, Nature Physics.

[23]  P. Patra,et al.  Single-Molecule Surface-Enhanced Raman Scattering Sensitivity of Ag-Core Au-Shell Nanoparticles: Revealed by Bi-Analyte Method. , 2013, The journal of physical chemistry letters.

[24]  Luis M Liz-Marzán,et al.  Organized Plasmonic Clusters with High Coordination Number and Extraordinary Enhancement in Surface-Enhanced Raman Scattering (SERS) , 2012, Angewandte Chemie.

[25]  A. Zayats,et al.  Nonlinear plasmonics , 2012, Nature Photonics.

[26]  J. Hafner,et al.  Utilizing 3D SERS Active Volumes in Aligned Carbon Nanotube Scaffold Substrates , 2012, Advanced materials.

[27]  R F Oulton,et al.  Active nanoplasmonic metamaterials. , 2012, Nature materials.

[28]  Ki-Hun Jeong,et al.  Glass Nanopillar Arrays with Nanogap‐Rich Silver Nanoislands for Highly Intense Surface Enhanced Raman Scattering , 2012, Advanced materials.

[29]  G. Meng,et al.  Arrays of Cone‐Shaped ZnO Nanorods Decorated with Ag Nanoparticles as 3D Surface‐Enhanced Raman Scattering Substrates for Rapid Detection of Trace Polychlorinated Biphenyls , 2012 .

[30]  M. Moskovits,et al.  Reversible Tuning of SERS Hot Spots with Aptamers , 2011, Advanced materials.

[31]  Sunghoon Kwon,et al.  Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. , 2011, Nature nanotechnology.

[32]  A. Agarwal,et al.  Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions , 2011, Proceedings of the National Academy of Sciences.

[33]  Harald Giessen,et al.  Nanoantenna-enhanced gas sensing in a single tailored nanofocus , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[34]  Alexandre Aubry,et al.  Surface plasmons and singularities. , 2010, Nano letters.

[35]  N. Kotov,et al.  SERS-active gold lace nanoshells with built-in hotspots. , 2010, Nano letters.

[36]  Luis M. Liz-Marzán,et al.  Environmental applications of plasmon assisted Raman scattering , 2010 .

[37]  Zhong Lin Wang,et al.  Shell-isolated nanoparticle-enhanced Raman spectroscopy , 2010, Nature.

[38]  Hongxing Xu,et al.  Highly Surface‐roughened “Flower‐like” Silver Nanoparticles for Extremely Sensitive Substrates of Surface‐enhanced Raman Scattering , 2009 .

[39]  Mathieu Kociak,et al.  Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. , 2009, Journal of the American Chemical Society.

[40]  R. V. Van Duyne,et al.  Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. , 2008, Journal of the American Chemical Society.

[41]  R. V. Van Duyne,et al.  A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy. , 2007, Journal of the American Chemical Society.

[42]  Lin Yang,et al.  Controllable Synthesis of Two‐ Dimensional Metal Nanoparticle Arrays with Oriented Size and Number Density Gradients , 2007 .

[43]  P. Etchegoin,et al.  Statistics of single-molecule surface enhanced Raman scattering signals: fluctuation analysis with multiple analyte techniques. , 2007, Analytical chemistry.

[44]  Pablo G. Etchegoin,et al.  Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study , 2007 .

[45]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[46]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[47]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[48]  Maity Gouranga,et al.  COMPREHENSIVE STUDY OF , 2018 .

[49]  Xi‐Wen Du,et al.  3D Aluminum Hybrid Plasmonic Nanostructures with Large Areas of Dense Hot Spots and Long‐Term Stability , 2017 .

[50]  Jie Fan,et al.  Real‐Time Probing Nanopore‐in‐Nanogap Plasmonic Coupling Effect on Silver Supercrystals with Surface‐Enhanced Raman Spectroscopy , 2017 .

[51]  Jianfeng Huang,et al.  Harnessing structural darkness in the visible and infrared wavelengths for a new source of light. , 2016, Nature nanotechnology.

[52]  Peter Nordlander,et al.  Plasmon-induced hot carrier science and technology. , 2015, Nature nanotechnology.

[53]  Yung Doug Suh,et al.  Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. , 2010, Nature materials.

[54]  May D. Wang,et al.  In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags , 2008, Nature Biotechnology.

[55]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .