Wetting and Roughness

We discuss in this review how the roughness of a solid impacts its wettability. We see in particular that both the apparent contact angle and the contact angle hysteresis can be dramatically affected by the presence of roughness. Owing to the development of refined methods for setting very well-controlled micro- or nanotextures on a solid, these effects are being exploited to induce novel wetting properties, such as spontaneous filmification, superhydrophobicity, superoleophobicity, and interfacial slip, that could not be achieved without roughness.

[1]  Cécile Cottin-Bizonne,et al.  High friction on a bubble mattress. , 2007, Nature materials.

[2]  A. Cassie,et al.  Wettability of porous surfaces , 1944 .

[3]  R. H. Dettre,et al.  Contact Angle Hysteresis: I. Study of an Idealized Rough Surface , 1964 .

[4]  J. Rothstein,et al.  Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces , 2005 .

[5]  Gershon Wolansky† and,et al.  The actual contact angle on a heterogeneous rough surface in three dimensions , 1998 .

[6]  J. Yeomans,et al.  Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[7]  S. G. Mason,et al.  Resistance to spreading of liquids by sharp edges , 1977 .

[8]  Lichao Gao,et al.  A Perfectly Hydrophobic Surface (θA/θR = 180°/180°) , 2006 .

[9]  Gareth H. McKinley,et al.  Designing Superoleophobic Surfaces , 2007, Science.

[10]  Xinjian Feng,et al.  Design and Creation of Superwetting/Antiwetting Surfaces , 2006 .

[11]  Howard A. Stone,et al.  Effective slip in pressure-driven Stokes flow , 2003, Journal of Fluid Mechanics.

[12]  Yang Cheng,et al.  Is the lotus leaf superhydrophobic , 2005 .

[13]  Neelesh A Patankar,et al.  Transition between superhydrophobic states on rough surfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[14]  D. Beysens,et al.  Nucleation and growth on a superhydrophobic grooved surface. , 2004, Physical review letters.

[15]  W. Thorpe PLASTRON RESPIRATION IN AQUATIC INSECTS , 1950, Biological reviews of the Cambridge Philosophical Society.

[16]  A. Buguin,et al.  Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces , 2005, cond-mat/0510773.

[17]  Y. Pomeau,et al.  Contact angle on heterogeneous surfaces: Weak heterogeneities , 1985 .

[18]  Akira Fujishima,et al.  Transparent Superhydrophobic Thin Films with Self-Cleaning Properties , 2000 .

[19]  Yang Cheng,et al.  Microscopic observations of condensation of water on lotus leaves , 2005 .

[20]  W. Barthlott,et al.  Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. , 2003, Journal of experimental botany.

[21]  David Hu,et al.  The Integument of Water-walking Arthropods: Form and Function , 2007 .

[22]  Glen McHale,et al.  Dual‐Scale Roughness Produces Unusually Water‐Repellent Surfaces , 2004 .

[23]  Christophe Ybert,et al.  Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries , 2007 .

[24]  C. Extrand,et al.  Model for Contact Angles and Hysteresis on Rough and Ultraphobic Surfaces , 2002 .

[25]  W. Zisman,et al.  UPPER LIMITS FOR THE CONTACT ANGLES OF LIQUIDS ON SOLIDS , 1963 .

[26]  Ching-ping Wong,et al.  Relationship between Work of Adhesion and Contact Angle Hysteresis on Superhydrophobic Surfaces , 2008 .

[27]  Evelyn N Wang,et al.  Reversible wetting-dewetting transitions on electrically tunable superhydrophobic nanostructured surfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[28]  D. Quéré,et al.  Rough wetting , 2001 .

[29]  A. Fujishima,et al.  Photogeneration of Highly Amphiphilic TiO2 Surfaces , 1998 .

[30]  Lichao Gao,et al.  The "lotus effect" explained: two reasons why two length scales of topography are important. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[31]  Kazuhito Hashimoto,et al.  Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets , 2002 .

[32]  G. Carbone,et al.  Hydrophobic properties of a wavy rough substrate , 2005, The European physical journal. E, Soft matter.

[33]  Serge Berthier,et al.  Iridescences: The Physical Colors of Insects , 2006 .

[34]  P. Gennes Wetting: statics and dynamics , 1985 .

[35]  A. Cassie,et al.  Large Contact Angles of Plant and Animal Surfaces , 1945, Nature.

[36]  Neelesh A Patankar,et al.  Anisotropy in the wetting of rough surfaces. , 2005, Journal of colloid and interface science.

[37]  D. Quéré,et al.  Drops at Rest on a Tilted Plane , 1998 .

[38]  J. Badyal,et al.  Super-hydrophobic Surfaces Produced by Plasma Fluorination of Polybutadiene Films , 2003 .

[39]  P. G. de Gennes,et al.  A model for contact angle hysteresis , 1984 .

[40]  Stephan Herminghaus,et al.  Roughness-induced non-wetting , 2000 .

[41]  Lichao Gao,et al.  Contact angle hysteresis explained. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[42]  K. Tadanaga,et al.  Formation Process of Super‐Water‐Repellent Al2O3 Coating Films with High Transparency by the Sol–Gel Method , 2005 .

[43]  Wilhelm Barthlott,et al.  Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces , 1997 .

[44]  Marcus L. Roper,et al.  Imbibition by polygonal spreading on microdecorated surfaces. , 2007, Nature materials.

[45]  Shu Yang,et al.  From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[46]  K. Tadanaga,et al.  Super-water-repellent AlO coating films with high transparency , 2005 .

[47]  Thomas Young,et al.  An Essay on the Cohesion of Fluids , 1800 .

[48]  Claus-Dieter Ohl,et al.  Nanometer-resolved collective micromeniscus oscillations through optical diffraction. , 2007, Physical review letters.

[49]  Marcus Müller,et al.  Two-level structured self-adaptive surfaces with reversibly tunable properties. , 2003, Journal of the American Chemical Society.

[50]  David Quéré,et al.  Superhydrophobic states , 2003, Nature materials.

[51]  Charles W. Heckman,et al.  Comparative morphology of arthropod exterior surfaces with the capability of binding a film of air underwater , 1983 .

[52]  Lei Jiang,et al.  The Dry‐Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography , 2007 .

[53]  G. McHale,et al.  Contact-angle hysteresis on super-hydrophobic surfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[54]  Lei Jiang,et al.  Reversible switching between superhydrophilicity and superhydrophobicity. , 2004, Angewandte Chemie.

[55]  Matthias Wessling,et al.  Spontaneous breakdown of superhydrophobicity. , 2007, Physical review letters.

[56]  P. Roach,et al.  Decoupling of the liquid response of a superhydrophobic quartz crystal microbalance. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[57]  David Quéré,et al.  Wetting transitions on rough surfaces , 2004 .

[58]  S. Richardson,et al.  On the no-slip boundary condition , 1973, Journal of Fluid Mechanics.

[59]  T. Young III. An essay on the cohesion of fluids , 1805, Philosophical Transactions of the Royal Society of London.

[60]  Tomohiro Onda,et al.  Super-Water-Repellent Fractal Surfaces , 1995 .

[61]  S. Vogel Living in a physical world VIII. Gravity and life in water , 2006, Journal of Biosciences.

[62]  A. Parker,et al.  Water capture by a desert beetle , 2001, Nature.

[63]  P Tabeling,et al.  Slippage of water past superhydrophobic carbon nanotube forests in microchannels. , 2006, Physical review letters.

[64]  Abraham Marmur,et al.  The Lotus effect: superhydrophobicity and metastability. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[65]  Glen McHale,et al.  Plastron properties of a superhydrophobic surface , 2006 .

[66]  C. Furmidge,et al.  Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention , 1962 .

[67]  J. Badyal,et al.  Pulsed Plasma Deposition of Super-Hydrophobic Nanospheres , 2002 .

[68]  E. Reyssat,et al.  Wicking within forests of micropillars , 2007 .

[69]  Andrea Mammoli,et al.  Drag reduction on a patterned superhydrophobic surface. , 2006, Physical review letters.

[70]  Neelesh A. Patankar,et al.  On the Modeling of Hydrophobic Contact Angles on Rough Surfaces , 2003 .

[71]  Stephan Herminghaus,et al.  How plants keep dry: a physicist's point of view. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[72]  Jin Zhai,et al.  Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. , 2004, Journal of the American Chemical Society.

[73]  T. J. McCarthy,et al.  A Commercially Available Perfectly Hydrophobic Material (θA/θR = 180°/180°) , 2007 .

[74]  A. Checco,et al.  Nonlinear dependence of the contact angle of nanodroplets on contact line curvature. , 2003, Physical review letters.

[75]  Johann Gottlob Leidenfrost On the fixation of water in diverse fire , 1966 .

[76]  Wilhelm Barthlott,et al.  Wettability and Contaminability of Insect Wings as a Function of Their Surface Sculptures , 1996 .

[77]  Edward Bormashenko,et al.  Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie-Baxter wetting hypothesis and Cassie-Wenzel capillarity-induced wetting transition. , 2007, Journal of colloid and interface science.

[78]  C. Stafford,et al.  Anisotropic wetting on tunable micro-wrinkled surfaces. , 2007, Soft matter.

[79]  A. Fujishima,et al.  Water ultrarepellency induced by nanocolumnar ZnO surface. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[80]  Lydéric Bocquet,et al.  Low-friction flows of liquid at nanopatterned interfaces , 2003, Nature materials.

[81]  R. N. Wenzel RESISTANCE OF SOLID SURFACES TO WETTING BY WATER , 1936 .

[82]  E. W. Washburn The Dynamics of Capillary Flow , 1921 .

[83]  Bharat Bhushan,et al.  Micro- and nanoscale characterization of hydrophobic and hydrophilic leaf surfaces , 2006 .

[84]  G McHale,et al.  Wetting and wetting transitions on copper-based super-hydrophobic surfaces. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[85]  J. Mann,et al.  The Flow of Liquids in Surface Grooves , 1996 .

[86]  G. Fogg,et al.  Diurnal Fluctuation in a Physical Property of Leaf Cuticle , 1944, Nature.

[87]  J. R. Philip Integral properties of flows satisfying mixed no-slip and no-shear conditions , 1972 .

[88]  Ernesto Occhiello,et al.  Contact angle hysteresis in oxygen plasma treated poly(tetrafluoroethylene) , 1989 .

[89]  Borgs,et al.  Does the roughness of the substrate enhance wetting? , 1995, Physical review letters.

[90]  J. R. Philip Flows satisfying mixed no-slip and no-shear conditions , 1972 .

[91]  Neelesh A Patankar,et al.  Mimicking the lotus effect: influence of double roughness structures and slender pillars. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[92]  D. Quéré,et al.  Bouncing transitions on microtextured materials , 2006 .

[93]  Antonio DeSimone,et al.  A new model for contact angle hysteresis , 2007, Networks Heterog. Media.

[94]  D. Quéré,et al.  On water repellency , 2005 .

[95]  Uwe Thiele,et al.  Wetting of textured surfaces , 2002 .

[96]  R. Chow,et al.  On the ability of drops or bubbles to stick to non-horizontal surfaces of solids , 1983, Journal of Fluid Mechanics.

[97]  Thomas J McCarthy,et al.  Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: ultrahydrophobic surfaces are not always water repellant. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[98]  K. Tadanaga,et al.  Formation process of super-water-repellant Al{sub 2}O{sub 3} coating films with high transparency by the sol-gel method , 1997 .

[99]  S. Herminghaus,et al.  Wetting: Statics and dynamics , 1997 .

[100]  J. Noble-Nesbitt,et al.  Transpiration in Podura Aquatica L. (Collembola, Isotomidae) and the Wetting Properties of its Cuticle , 1963 .

[101]  E. Charlaix,et al.  Boundary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts. , 2005, Physical review letters.

[102]  Gershon Wolansky,et al.  Apparent contact angles on rough surfaces: the Wenzel equation revisited , 1999 .

[103]  P. Hoffmann,et al.  Water wetting transition parameters of perfluorinated substrates with periodically distributed flat-top microscale obstacles. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[104]  Julia M. Yeomans,et al.  Impalement of fakir drops , 2007 .

[105]  Abraham Marmur,et al.  Underwater superhydrophobicity: theoretical feasibility. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[106]  Jürgen Rühe,et al.  Condensation and wetting transitions on microstructured ultra-hydrophobic surfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[107]  D. Quéré,et al.  Bouncing water drops , 2000 .

[108]  Xuefeng Gao,et al.  Biophysics: Water-repellent legs of water striders , 2004, Nature.

[109]  A. DeSimone,et al.  Wetting of rough surfaces: a homogenization approach , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[110]  Didem Öner,et al.  Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability , 2000 .

[111]  R. Pogreb,et al.  Vibration-induced Cassie-Wenzel wetting transition on rough surfaces , 2007 .

[112]  G McHale,et al.  Analysis of droplet evaporation on a superhydrophobic surface. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[113]  Blair Perot,et al.  Laminar drag reduction in microchannels using ultrahydrophobic surfaces , 2004 .

[114]  Michael Nosonovsky,et al.  Multiscale roughness and stability of superhydrophobic biomimetic interfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[115]  Lichao Gao,et al.  "Artificial lotus leaf" prepared using a 1945 patent and a commercial textile. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[116]  Wei Chen,et al.  Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples , 1999 .

[117]  Jin-Kyu Lee,et al.  Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[118]  W. Barthlott,et al.  Purity of the sacred lotus, or escape from contamination in biological surfaces , 1997, Planta.

[119]  Akira Fujishima,et al.  Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate. , 2000 .

[120]  R. Lipowsky,et al.  Contact Angles on Heterogeneous Surfaces: A New Look at Cassie's and Wenzel's Laws , 1998, cond-mat/9809089.

[121]  Gareth H. McKinley,et al.  Superhydrophobic Carbon Nanotube Forests , 2003 .

[122]  Tomohiro Onda,et al.  Super Water-Repellent Surfaces Resulting from Fractal Structure , 1996 .

[123]  A. Cazabat,et al.  Dynamics of wetting: Effects of surface roughness. , 1986 .

[124]  T. Salamon,et al.  Nanonails: a simple geometrical approach to electrically tunable superlyophobic surfaces. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[125]  Abraham Marmur,et al.  Spreading of liquids on rough surfaces , 1999 .

[126]  Akira Fujishima,et al.  Structural color and the lotus effect. , 2003, Angewandte Chemie.