High-Energy All-Solid-State Organic–Lithium Batteries Based on Ceramic Electrolytes

Recent studies have identified unique properties of organic battery electrode materials such as moderate redox potentials and mechanical softness which are uniquely beneficial for all-solid-state b...

[1]  Y. Jung,et al.  Digital Twin‐Driven All‐Solid‐State Battery: Unraveling the Physical and Electrochemical Behaviors , 2020, Advanced Energy Materials.

[2]  Yan Yao,et al.  Opportunities and Challenges for Organic Electrodes in Electrochemical Energy Storage. , 2020, Chemical reviews.

[3]  I. Han,et al.  High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes , 2020 .

[4]  Ellen Ivers-Tiffée,et al.  Benchmarking the performance of all-solid-state lithium batteries , 2020 .

[5]  C. Yoon,et al.  Ni‐Rich Layered Cathode Materials with Electrochemo‐Mechanically Compliant Microstructures for All‐Solid‐State Li Batteries , 2019, Advanced Energy Materials.

[6]  G. Ceder,et al.  High Active Material Loading in All‐Solid‐State Battery Electrode via Particle Size Optimization , 2019, Advanced Energy Materials.

[7]  Liquan Chen,et al.  Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. , 2019, Chemical reviews.

[8]  Yongfeng Liu,et al.  Nanoscaled Lithium Powders with Protection of Ionic Liquid for Highly Stable Rechargeable Lithium Metal Batteries , 2019, Advanced science.

[9]  Qian Sun,et al.  Unravelling the Chemistry and Microstructure Evolution of a Cathodic Interface in Sulfide-Based All-Solid-State Li-Ion Batteries , 2019, ACS Energy Letters.

[10]  M. Nisula,et al.  Organic electrode materials with solid-state battery technology , 2019, Journal of Materials Chemistry A.

[11]  Yan Yao,et al.  Taming Active Material-Solid Electrolyte Interfaces with Organic Cathode for All-Solid-State Batteries , 2019, Joule.

[12]  J. Janek,et al.  Experimental Assessment of the Practical Oxidative Stability of Lithium Thiophosphate Solid Electrolytes , 2019, Chemistry of Materials.

[13]  Chunsheng Wang,et al.  Cathode-Supported All-Solid-State Lithium–Sulfur Batteries with High Cell-Level Energy Density , 2019, ACS Energy Letters.

[14]  D. Weber,et al.  Microstructural Modeling of Composite Cathodes for All-Solid-State Batteries , 2018, The Journal of Physical Chemistry C.

[15]  Kun Fu,et al.  All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture , 2018, Energy Storage Materials.

[16]  Chunsheng Wang,et al.  Architectural design and fabrication approaches for solid-state batteries , 2018, MRS Bulletin.

[17]  Yan Yao,et al.  Positioning Organic Electrode Materials in the Battery Landscape , 2018, Joule.

[18]  Hun‐Gi Jung,et al.  Quantitative Analysis of Microstructures and Reaction Interfaces on Composite Cathodes in All-Solid-State Batteries Using a Three-Dimensional Reconstruction Technique. , 2018, ACS applied materials & interfaces.

[19]  Xiao Ji,et al.  Solid-State Electrolyte Anchored with a Carboxylated Azo Compound for All-Solid-State Lithium Batteries. , 2018, Angewandte Chemie.

[20]  Yizhou Zhu,et al.  Design Strategies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes for All‐Solid‐State Batteries , 2018 .

[21]  J. Janek,et al.  Impact of Cathode Material Particle Size on the Capacity of Bulk-Type All-Solid-State Batteries , 2018 .

[22]  Sehee Lee,et al.  Tailored Organic Electrode Material Compatible with Sulfide Electrolyte for Stable All-Solid-State Sodium Batteries. , 2018, Angewandte Chemie.

[23]  J. Sann,et al.  Redox-active cathode interphases in solid-state batteries , 2017 .

[24]  Jun-Y. Park,et al.  Performance improvement of all-solid-state Li-S batteries with optimizing morphology and structure of sulfur composite electrode , 2017 .

[25]  T. Leichtweiss,et al.  Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes , 2017 .

[26]  David P. Wilkinson,et al.  Recent advances in all-solid-state rechargeable lithium batteries , 2017 .

[27]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[28]  Chunsheng Wang,et al.  Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes , 2016 .

[29]  P. Poizot,et al.  A rechargeable lithium/quinone battery using a commercial polymer electrolyte , 2015 .

[30]  Zhiqiang Zhu,et al.  All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode. , 2014, Journal of the American Chemical Society.

[31]  S. Teoh,et al.  Polymer powder processing of cryomilled polycaprolactone for solvent-free generation of homogeneous bioactive tissue engineering scaffolds. , 2014, Small.

[32]  Haoshen Zhou,et al.  Towards sustainable and versatile energy storage devices: an overview of organic electrode materials , 2013 .

[33]  Jun Chen,et al.  Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries , 2013 .

[34]  Jun Chen,et al.  Organic Electrode Materials for Rechargeable Lithium Batteries , 2012 .

[35]  U. Troeltzsch,et al.  Characterizing aging effects of lithium ion batteries by impedance spectroscopy , 2006 .

[36]  R. Huggins Simple method to determine electronic and ionic components of the conductivity in mixed conductors a review , 2002 .