Thermal properties of graphene from path-integral simulations.

Thermal properties of graphene monolayers are studied by path-integral molecular dynamics simulations, which take into account the quantization of vibrational modes in the crystalline membrane and allow one to consider anharmonic effects in these properties. This system was studied at temperatures in the range from 12 to 2000 K and zero external stress, by describing the interatomic interactions through the LCBOPII effective potential. We analyze the internal energy and specific heat and compare the results derived from the simulations with those yielded by a harmonic approximation for the vibrational modes. This approximation turns out to be rather precise up to temperatures of about 400 K. At higher temperatures, we observe an influence of the elastic energy due to the thermal expansion of the graphene sheet. Zero-point and thermal effects on the in-plane and "real" surface of graphene are discussed. The thermal expansion coefficient α of the real area is found to be positive at all temperatures, in contrast to the expansion coefficient αp of the in-plane area, which is negative at low temperatures and becomes positive for T ≳ 1000 K.

[1]  C. Herrero,et al.  Elastic properties and mechanical tension of graphene , 2017, 1702.08753.

[2]  C. Herrero,et al.  Quantum effects in graphene monolayers: Path-integral simulations. , 2016, The Journal of chemical physics.

[3]  A. Mirlin,et al.  Quantum elasticity of graphene: Thermal expansion coefficient and specific heat , 2016, 1609.00924.

[4]  C. Herrero,et al.  Anharmonic effects in the optical and acoustic bending modes of graphene , 2016, 1606.07688.

[5]  L. Colombo,et al.  Structural, Vibrational, and Thermal Properties of Nanocrystalline Graphene in Atomistic Simulations , 2016 .

[6]  V. K. Jindal,et al.  Thermodynamic properties of pure and doped (B, N) graphene , 2016, 1601.05896.

[7]  F. Peeters,et al.  Quantum effects in a free-standing graphene lattice: Path-integral against classical Monte Carlo simulations , 2015 .

[8]  Rui Huang,et al.  Entropic Effects of Thermal Rippling on van der Waals Interactions between Monolayer Graphene and a Rigid Substrate , 2015, 1511.02914.

[9]  F. Peeters,et al.  Theory of thermal expansion in 2D crystals , 2015 .

[10]  M. Katsnelson,et al.  Scaling Behavior and Strain Dependence of In-Plane Elastic Properties of Graphene. , 2015, Physical review letters.

[11]  H. Noguchi,et al.  Monte Carlo study of the frame, fluctuation and internal tensions of fluctuating membranes with fixed area. , 2015, Soft matter.

[12]  P. Tarazona,et al.  A computer simulation approach to quantify the true area and true area compressibility modulus of biological membranes. , 2015, The Journal of chemical physics.

[13]  F. Peeters,et al.  Anharmonic effects on thermodynamic properties of a graphene monolayer , 2014 .

[14]  P. Lambin Elastic Properties and Stability of Physisorbed Graphene , 2014 .

[15]  F. Calvo,et al.  Thermal expansion of free-standing graphene: benchmarking semi-empirical potentials , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  Rui Huang,et al.  Thermomechanics of monolayer graphene: Rippling, thermal expansion and elasticity , 2014 .

[17]  F. Guinea,et al.  Thermodynamics of quantum crystalline membranes , 2014, 1403.2637.

[18]  C. Herrero,et al.  Path-integral simulation of solids , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  I. Lobzenko,et al.  Properties of discrete breathers in graphane from ab initio simulations , 2014, 1403.1028.

[20]  G. P. Srivastava,et al.  Evolution of thermal properties from graphene to graphite , 2014 .

[21]  P. Tarazona,et al.  Thermal fluctuations and bending rigidity of bilayer membranes. , 2013, The Journal of chemical physics.

[22]  M. D. Shaw,et al.  Measurement of the electronic thermal conductance channels and heat capacity of graphene at low temperature , 2013, 1308.2265.

[23]  Hui‐Shen Shen,et al.  Graphene: Why buckling occurs? , 2013 .

[24]  G. P. Srivastava,et al.  Thermal conductivity of graphene and graphite , 2013 .

[25]  K. Ho,et al.  Formation and development of dislocation in graphene , 2013 .

[26]  T. Dumitricǎ,et al.  Chiral graphene nanoribbons: Objective molecular dynamics simulations and phase-transition modeling. , 2012, The Journal of chemical physics.

[27]  F. Guinea,et al.  Density functional theory analysis of flexural modes, elastic constants, and corrugations in strained graphene , 2012, 1301.4936.

[28]  E. Pop,et al.  Thermal properties of graphene: Fundamentals and applications , 2012, 1301.6181.

[29]  R. Miranda,et al.  Elastic properties of a macroscopic graphene sample from phonon dispersion measurements , 2012 .

[30]  C. Herrero,et al.  Quasi-harmonic approximation of thermodynamic properties of ice Ih, II, and III. , 2012, The Journal of chemical physics.

[31]  F. Guinea,et al.  Bending modes, anharmonic effects, and thermal expansion coefficient in single-layer and multilayer graphene , 2012, 1206.4896.

[32]  M. Hagan,et al.  Mechanisms of budding of nanoscale particles through lipid bilayers. , 2012, The journal of physical chemistry. B.

[33]  Y. Kawazoe,et al.  Temperature dependent elastic constants and ultimate strength of graphene and graphyne. , 2012, The Journal of chemical physics.

[34]  G. Flynn Perspective: The dawning of the age of graphene. , 2011, The Journal of chemical physics.

[35]  B. Borca,et al.  Helium reflectivity and Debye temperature of graphene grown epitaxially on Ru(0001) , 2011 .

[36]  D. Yoon,et al.  Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. , 2011, Nano letters.

[37]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[38]  Rafael Ramirez,et al.  Isotope effects in ice Ih: a path-integral simulation. , 2011, The Journal of chemical physics.

[39]  A. Fasolino,et al.  Phonons of graphene and graphitic materials derived from the empirical potential LCBOPII , 2010, 1010.5594.

[40]  O. Edholm,et al.  Undulation contributions to the area compressibility in lipid bilayer simulations. , 2009, Biophysical journal.

[41]  Baowen Li,et al.  Thermal expansion in single-walled carbon nanotubes and graphene: Nonequilibrium Green's function approach , 2009, 0909.1917.

[42]  C. N. Lau,et al.  Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. , 2009, Nature nanotechnology.

[43]  Luciano Colombo,et al.  Nonlinear elasticity of monolayer graphene. , 2009, Physical review letters.

[44]  Alexander A. Balandin,et al.  Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering , 2009 .

[45]  C. Herrero,et al.  Vibrational properties and diffusion of hydrogen on graphene , 2009, 0907.2366.

[46]  V. Tewary,et al.  Singular behavior of the Debye-Waller factor of graphene , 2009 .

[47]  M I Katsnelson,et al.  Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. , 2008, Physical review letters.

[48]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[49]  Priya Vashishta,et al.  Electronic processes in fast thermite chemical reactions: a first-principles molecular dynamics study. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  C. N. Lau,et al.  PROOF COPY 020815APL Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits , 2008 .

[51]  J. Fournier,et al.  Direct calculation from the stress tensor of the lateral surface tension of fluctuating fluid membranes. , 2008, Physical review letters.

[52]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[53]  M I Katsnelson,et al.  Intrinsic ripples in graphene. , 2007, Nature materials.

[54]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[55]  Jannik C. Meyer,et al.  The structure of suspended graphene sheets , 2007, Nature.

[56]  C. Herrero,et al.  Hydrogen and muonium in diamond : A path-integral molecular dynamics simulation , 2006, cond-mat/0606062.

[57]  C. Herrero,et al.  Path-integral molecular dynamics simulation of diamond , 2006, cond-mat/0606028.

[58]  L. Ghiringhelli,et al.  Improved long-range reactive bond-order potential for carbon. II. Molecular simulation of liquid carbon , 2005 .

[59]  L. Ghiringhelli,et al.  Improved long-range reactive bond-order potential for carbon. I. Construction (Correction on vol 72, pg 214102, 2005) , 2005 .

[60]  A. Imparato Surface tension in bilayer membranes with fixed projected area. , 2005, The Journal of chemical physics.

[61]  D. Frenkel,et al.  Modeling the phase diagram of carbon. , 2005, Physical review letters.

[62]  Nicola Marzari,et al.  First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives , 2004, cond-mat/0412643.

[63]  L. Wirtz,et al.  The phonon dispersion of graphite revisited , 2004, cond-mat/0404637.

[64]  T. Iwata,et al.  Temperature dependence of lattice vibrations and analysis of the specific heat of graphite , 2003 .

[65]  V. Popov Low-temperature specific heat of nanotube systems , 2002 .

[66]  Rafael Ramírez,et al.  Structural and thermodynamic properties of diamond: A path-integral Monte Carlo study , 2000 .

[67]  Mark E. Tuckerman,et al.  Molecular dynamics algorithms for path integrals at constant pressure , 1999 .

[68]  M. Tuckerman,et al.  Path integral molecular dynamics: a computational approach to quantum statistical mechanics , 1998 .

[69]  Giovanni Ciccotti,et al.  Book Review: Classical and Quantum Dynamics in Condensed Phase Simulations , 1998 .

[70]  S. Louie,et al.  Heat capacity of carbon nanotubes , 1996 .

[71]  Ramírez,et al.  Thermodynamic properties of c-Si derived by quantum path-integral Monte Carlo simulations. , 1996, Physical review. B, Condensed matter.

[72]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[73]  D. Ceperley Path integrals in the theory of condensed helium , 1995 .

[74]  B. Berne,et al.  Efficient molecular dynamics and hybrid Monte Carlo algorithms for path integrals , 1993 .

[75]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[76]  Gillan Quantum simulation of hydrogen in metals. , 1988, Physical review letters.

[77]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[78]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[79]  B. Berne,et al.  On path integral Monte Carlo simulations , 1982 .

[80]  Peter G. Wolynes,et al.  Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids , 1981 .

[81]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[82]  W. Desorbo,et al.  The Specific Heat of Graphite from 13° to 300°K , 1953 .

[83]  H. Brooks,et al.  THE LATTICE VIBRATION SPECIFIC HEAT OF GRAPHITE , 1953 .

[84]  J. Grotendorst,et al.  Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms , 2001 .

[85]  M. Straumanis,et al.  Thermal expansion behavior of silicon at low temperatures , 1972 .

[86]  P. Klemens The Specific Heat and Thermal Conductivity of Graphite , 1953 .