LMI Approximations for the Radius of the Intersection of Ellipsoids: Survey

This paper surveys various linear matrix inequality relaxation techniques for evaluating the maximum norm vector within the intersection of several ellipsoids. This difficult nonconvex optimization problem arises frequently in robust control synthesis. Two randomized algorithms and several ellipsoidal approximations are described. Guaranteed approximation bounds are derived in order to evaluate the quality of these relaxations.

[1]  Tamás Terlaky,et al.  On maximization of quadratic form over intersection of ellipsoids with common center , 1999, Math. Program..

[2]  A. J. Quist,et al.  Copositive realxation for genera quadratic programming , 1998 .

[3]  Y. Nesterov Semidefinite relaxation and nonconvex quadratic optimization , 1998 .

[4]  J. Norton,et al.  State bounding with ellipsoidal set description of the uncertainty , 1996 .

[5]  Yinyu Ye,et al.  Approximating quadratic programming with bound and quadratic constraints , 1999, Math. Program..

[6]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[7]  Vladimír Kučera,et al.  Diophantine equations in control - A survey , 1993, Autom..

[8]  Marc Teboulle,et al.  Hidden convexity in some nonconvex quadratically constrained quadratic programming , 1996, Math. Program..

[9]  S. Tarbouriech,et al.  Algebraic approach to robust controller design: a geometric interpretation , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[10]  S. Tarbouriech,et al.  Rank-one LMI approach to simultaneous stabilization of linear systems , 1999, 1999 European Control Conference (ECC).

[11]  Stephen P. Boyd,et al.  Semidefinite Programming Relaxations of Non-Convex Problems in Control and Combinatorial Optimization , 1997 .

[12]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[13]  J. Tsitsiklis,et al.  NP-Hardness of Some Linear Control Design Problems , 1997 .

[14]  Biswa Nath Datta,et al.  On Bezoutians, Van der Monde matrices, and the Lienard-Chipart stability criterion , 1989 .

[15]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[16]  Stephen P. Boyd,et al.  Method of centers for minimizing generalized eigenvalues , 1993, Linear Algebra and its Applications.

[17]  Eric Walter,et al.  Trace Versus Determinant in Ellipsoidal Outer-Bounding, with Application to State Estimation , 1996 .

[18]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[19]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[20]  Zhi-Quan Luo,et al.  Approximation Algorithms for Quadratic Programming , 1998, J. Comb. Optim..

[21]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[22]  Stephen P. Boyd,et al.  Determinant Maximization with Linear Matrix Inequality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[23]  K. Goh,et al.  Robust synthesis via bilinear matrix inequalities , 1996 .