Can Many-Valued Logic Help to Comprehend Quantum Phenomena?

Following Łukasiewicz, we argue that future non-certain events should be described with the use of many-valued, not 2-valued logic. It is shown that, according to this perspective, the Greenberger - Horne - Zeilinger ‘paradox’ is an artifact caused by unjustified use of 2-valued logic while considering results of future non-certain events. Description of properties of quantum objects before they are measured should be performed with the use of propositional functions that form a particular model of ∞-valued Łukasiewicz logic. This model is distinguished by specific operations of negation, conjunction, and disjunction that are used in it.

[1]  Hans Reichenbach,et al.  Philosophic foundations of quantum mechanics , 1945 .

[2]  Hans Reichenbach,et al.  Les fondements logiques de la mécanique des quanta , 1952 .

[3]  Jarosław Pykacz,et al.  Fuzzy quantum logics and infinite-valued Łukasiewicz logic , 1994 .

[4]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[5]  Jaroslaw Pykacz,et al.  Łukasiewicz Operations in Fuzzy Set and Many-Valued Representations of Quantum Logics , 2000 .

[6]  Paulette Février Les relations d’incertitude d’Heisenberg et la logique , 1937 .

[7]  M. Jammer The philosophy of quantum mechanics , 1974 .

[8]  Jaroslaw Pykacz,et al.  Towards many-valued/fuzzy interpretation of quantum mechanics , 2011, Int. J. Gen. Syst..

[9]  N. Mermin Quantum mysteries revisited , 1990 .

[10]  Abner Shimony,et al.  The logic of quantum mechanics , 1981 .

[11]  Jaroslaw Pykacz,et al.  Unification of Two Approaches to Quantum Logic: Every Birkhoff – von Neumann Quantum Logic is a Partial Infinite-Valued Łukasiewicz Logic , 2010, Stud Logica.

[12]  Fritz Zwicky,et al.  On a new type of reasoning and some of its possible consequences , 1933 .

[13]  A. Peres Unperformed experiments have no results , 1978 .

[14]  Sylvia Pulmannová,et al.  Orthomodular structures as quantum logics , 1991 .

[15]  J. Lukasiewicz,et al.  ON THREE-VALUED LOGIC , 2016 .

[16]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[17]  Die Quantentheorie der einfachen Alternative , 1958 .