Spatio-temporal modeling of localized brain activity.

Functional neuroimaging, including positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), plays an important role in identifying specific brain regions associated with experimental stimuli or psychiatric disorders such as schizophrenia. PET and fMRI produce massive data sets that contain both temporal correlations from repeated scans and complex spatial correlations. Several methods exist for handling temporal correlations, some of which rely on transforming the response data to induce either a known or an independence covariance structure. Despite the presence of spatial correlations between the volume elements (voxels) comprising a brain scan, conventional methods perform voxel-by-voxel analyses of measured brain activity. We propose a two-stage spatio-temporal model for the estimation and testing of localized activity. Our second-stage model specifies a spatial auto-regression, capturing correlations within neural processing clusters defined by a data-driven cluster analysis. We use maximum likelihood methods to estimate parameters from our spatial autoregressive model. Our model protects against type-I errors, enables the detection of both localized and regional activations (including volume of interest effects), provides information on functional connectivity in the brain, and establishes a framework to produce spatially smoothed maps of distributed brain activity for each individual. We illustrate the application of our model using PET data from a study of working memory in individuals with schizophrenia.

[1]  F. DuBois Bowman,et al.  Identifying spatial relationships in neural processing using a multiple classification approach , 2004, NeuroImage.

[2]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[3]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited , 1995, NeuroImage.

[4]  W. Tobler A Computer Movie Simulating Urban Growth in the Detroit Region , 1970 .

[5]  Andrew P. Holmes,et al.  CHAPTER 65 – Nonparametric Analysis of Statistic Images from Functional Mapping Experiments , 1996 .

[6]  Scott T. Grafton,et al.  Automated image registration: I. General methods and intrasubject, intramodality validation. , 1998, Journal of computer assisted tomography.

[7]  K. Worsley,et al.  Local Maxima and the Expected Euler Characteristic of Excursion Sets of χ 2, F and t Fields , 1994, Advances in Applied Probability.

[8]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[9]  Connie M. Borror,et al.  Methods of Multivariate Analysis, 2nd Ed. , 2004 .

[10]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Theory , 2002, NeuroImage.

[11]  Robert Tibshirani,et al.  Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy , 1986 .

[12]  Alan C. Evans,et al.  A Linear Spatial Correlation Model, with Applications to Positron Emission Tomography , 1991 .

[13]  Warren S. Sarle,et al.  Cubic Clustering Criterion , 1983 .

[14]  Alan C. Evans,et al.  A Three-Dimensional Statistical Analysis for CBF Activation Studies in Human Brain , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[15]  W. D. Penny,et al.  Random-Effects Analysis , 2002 .

[16]  Nicholas Lange,et al.  Statistical Procedures for Functional MRI , 2000 .

[17]  J C Mazziotta,et al.  Automated image registration: II. Intersubject validation of linear and nonlinear models. , 1998, Journal of computer assisted tomography.

[18]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited—Again , 1995, NeuroImage.

[19]  S. R. Searle,et al.  Generalized, Linear, and Mixed Models , 2005 .

[20]  R. Cabeza,et al.  Handbook of functional neuroimaging of cognition , 2001 .

[21]  J. Mazziotta,et al.  Automated image registration , 1993 .

[22]  C. Kilts,et al.  Modeling intra‐subject correlation among repeated scans in positron emission tomography (PET) neuroimaging data , 2003, Human brain mapping.

[23]  Stanley Finger,et al.  Origins of neuroscience: A history of explorations into brain function. , 1994 .

[24]  G. Molenberghs,et al.  Linear Mixed Models for Longitudinal Data , 2001 .

[25]  Karl J. Friston,et al.  Functional Connectivity: The Principal-Component Analysis of Large (PET) Data Sets , 1993, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[26]  耕太 片野田,et al.  A spatio-temporal regression model for the analysis of functional MRI data , 2002 .

[27]  H. Lüders,et al.  Functional connectivity in the human language system: a cortico-cortical evoked potential study. , 2004, Brain : a journal of neurology.

[28]  Anthony R. McIntosh,et al.  Functional Neuroimaging: Network Analyses , 2001 .

[29]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[30]  T. Caliński,et al.  A dendrite method for cluster analysis , 1974 .

[32]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[33]  Emery N. Brown,et al.  Locally Regularized Spatiotemporal Modeling and Model Comparison for Functional MRI , 2001, NeuroImage.

[34]  Rajan Patel,et al.  Methods for detecting functional classifications in neuroimaging data , 2004, Human brain mapping.

[35]  E. Bullmore,et al.  Statistical methods of estimation and inference for functional MR image analysis , 1996, Magnetic resonance in medicine.

[36]  W. Penny,et al.  Random-Effects Analysis , 2002 .

[37]  R. Jennrich,et al.  Unbalanced repeated-measures models with structured covariance matrices. , 1986, Biometrics.

[38]  J. A. Simpson,et al.  Integrative functions of the cerebral cortex , 1988 .

[39]  R. Weisskoff,et al.  Effect of temporal autocorrelation due to physiological noise and stimulus paradigm on voxel‐level false‐positive rates in fMRI , 1998, Human brain mapping.

[40]  L. Garey Brodmann's localisation in the cerebral cortex , 1999 .