Integration of design and control : A robust control approach using MPC

This paper presents a new method to integrate process control with process design. The process design is based on steady-state costs, .i.e., capital and operating costs. Control is incorporated into the design in terms of a variability cost. This term is calculated based on the non-linear process model, represented here as a nominal linear model supplemented with model parameter uncertainty. Robust control tools are then used within the approach to assess closed-loop robust stability and to calculate closed-loop variability. The integrated method results in a non-linear constrained optimization problem with an objective function that consists of the sum of the steady costs and the variability cost. Optimization using the traditional sequential approach and the new integrated method was applied to design a multi-component distillation column using a Model Predictive Control (MPC) algorithm. The optimization results show that the integrated method can lead to significant cost savings when compared to the traditional sequential approach. In addition, an RGA analysis was performed to study the effects of process interactions on the optimization results. On presente dans cet article une nouvelle methode pour integrer le controle de procede a la conception de procede. La conception de procede repose sur les couts en regime etabli, c'est-a-dire les couts en capital et de fonctionnement. Le controle est introduit dans la conception comme un cout de variabilite. Ce terme est calcule a partir du modele de procede non lineaire, represente ici comme un modele lineaire nominal auquel on a ajoute une incertitude dans les parametres du modele. Des outils de controle robustes sont ensuite utilises dans cette methode afin d'evaluer la robustesse de la stabilite en boucle fermee et de calculer la variabilite en boucle fermee. La methode integree aboutit a un probleme d'optimisation contraint non lineaire avec une fonction objectif composee de la somme des couts stables et du cout de la variabilite. L'optimisation par l'approche sequentielle traditionnelle et par la nouvelle methode integree a ete appliquee a la conception d'une colonne a distiller multicomposante en utilisant un algorithme de controle predictif par modeles (MPC). Les resultats d'optimisation montrent que la methode integree peut conduire a des economies de cout significatives comparativement a l'approche sequentielle traditionnelle. En outre, on a effectue une analyse RGA pour etudier les effets des interactions de procede sur les resultats d'optimisation.

[1]  Manfred Morari,et al.  Robust Controller Design for a Nonlinear CSTR , 1989, 1989 American Control Conference.

[2]  Peter L. Lee Nonlinear Process Control , 1993 .

[3]  Christodoulos A. Floudas,et al.  Analyzing the interaction of design and control—1. A multiobjective framework and application to binary distillation synthesis , 1994 .

[4]  Efstratios N. Pistikopoulos,et al.  Optimal design of dynamic systems under uncertainty , 1996 .

[5]  Daniel R. Lewin,et al.  A simple tool for disturbance resiliency diagnosis and feedforward control design , 1996 .

[6]  Hector Budman,et al.  Model predictive control with soft constraints with application to lime kiln control , 1999 .

[7]  Efstratios N. Pistikopoulos,et al.  Simultaneous design and control optimisation under uncertainty , 2000 .

[8]  Peter L. Lee,et al.  Decentralized control design for nonlinear multi-unit plants: a gap metric approach , 2000 .

[9]  Efstratios N. Pistikopoulos,et al.  The interactions of design control and operability in reactive distillation systems , 2002 .

[10]  A. M. Blanco,et al.  Interaction between process design and process operability of chemical processes: an eigenvalue optimization approach , 2003, Comput. Chem. Eng..

[11]  Efstratios N. Pistikopoulos,et al.  Recent advances in optimization-based simultaneous process and control design , 2004, Comput. Chem. Eng..

[12]  P. L. Douglas,et al.  The integration of design and control: IMC control and robustness , 2005, Comput. Chem. Eng..