Shape Effect of Silicon Nitride Subwavelength Structure on Reflectance for Silicon Solar Cells

In this paper, we, for the first time, examine the spectral reflectivity of hemisphere-, cone-, cylinder-, and parabola-shaped silicon nitride (Si3N4) subwavelength structures (SWSs). A multilayer rigorous coupled-wave approach is advanced to evaluate the reflection properties of Si3N4 SWSs. We optimize the aforementioned four different shapes of SWSs in terms of effective reflectance over a range of wavelength. The results of our paper show that a lowest effective reflectivity could be achieved for the optimized cone-shaped SWS as compared to hemisphere-, parabola-, and cylinder-shaped structures with the same volume. The best shape SWS is then fabricated together with a silicon (Si) solar cell, and the efficiency of the solar cell is compared with that of a solar cell with single-layer antireflection coating (ARC). An increase of 1.09% in cell efficiency () is observed for the Si solar cell with a cone-shaped Si3N4 SWS (12.86%) as compared with the cell with single-layer Si3N4 ARCs (11.77%).

[1]  T. Gaylord,et al.  Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings , 1995 .

[2]  M. Hutley,et al.  The Optical Properties of 'Moth Eye' Antireflection Surfaces , 1982 .

[3]  A. Aberle Thin-film solar cells , 2009 .

[4]  Peng Jiang,et al.  Broadband moth-eye antireflec tion coatings on silicon , 2008 .

[5]  Chun-Wei Chang,et al.  Fabrication of Antireflective Sub-Wavelength Structures on Silicon Nitride Using Nano Cluster Mask for Solar Cell Application , 2009, Nanoscale research letters.

[6]  W H Southwell,et al.  Antireflection surfaces in silicon using binary optics technology. , 1992, Applied optics.

[7]  Martin A. Green,et al.  Optimized antireflection coatings for high-efficiency silicon solar cells , 1991 .

[8]  J. Gee,et al.  Characterization of random reactive ion etched-textured silicon solar cells , 2001 .

[9]  A. Holt,et al.  Acidic texturing of multicrystalline silicon wafers , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[10]  H diffusion for impurity and defect passivation: a physical model for solar cell processing , 2002, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002..

[11]  Thomas K. Gaylord,et al.  Rigorous coupled-wave analysis of metallic surface-relief gratings , 1986 .

[12]  Peng Jiang,et al.  Templated biomimetic multifunctional coatings , 2008 .

[13]  K. Nishioka,et al.  Antireflection subwavelength structure of silicon surface formed by wet process using catalysis of single nano-sized gold particle , 2008 .

[14]  Yiming Li,et al.  Numerical calculation of the reflectance of sub-wavelength structures on silicon nitride for solar cell application , 2009, Comput. Phys. Commun..

[15]  P. Yeh,et al.  Optical Waves in Layered Media , 1988 .

[16]  Peng Jiang,et al.  Templated fabrication of large area subwavelength antireflection gratings on silicon , 2007 .

[17]  R. Mertens,et al.  Mechanical wafer engineering for high efficiency solar cells: an investigation of the induced surface damage , 1994, Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC).

[18]  Yoshiaki Kanamori,et al.  Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks , 2006 .

[19]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[20]  Peng Jiang,et al.  Bioinspired broadband antireflection coatings on GaSb , 2008 .

[21]  Jin-Hua Huang,et al.  Silicon Nitride Nanopillars and Nanocones Formed by Nickel Nanoclusters and Inductively Coupled Plasma Etching for Solar Cell Application , 2009 .

[22]  Design and fabrication of sub-wavelength structure on silicon nitride for solar cells , 2009, 2009 9th IEEE Conference on Nanotechnology (IEEE-NANO).

[23]  Kazuhiro Hane,et al.  100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask , 2001 .

[24]  M. Alkaisi,et al.  Damage studies in dry etched textured silicon surfaces , 2004 .

[25]  Martin A. Green,et al.  High efficiency polycrystalline silicon solar cells using phosphorus pretreatment , 1986 .

[26]  T. Nakada,et al.  Thin-Film Solar Cells , 2002 .

[27]  T. Gaylord,et al.  Rigorous coupled-wave analysis of planar-grating diffraction , 1981 .

[28]  Hongming Fan,et al.  Simple lithographic approach for subwavelength structure antireflection , 2007 .