Nucleation behavior of ωo phase in TiAl alloys at different elevated temperatures

[1]  R. Hu,et al.  The Effect of Pressure Stress on the Evolution of B2(ω) Phase in High Nb Containing TiAl Alloy   , 2017 .

[2]  H. Fu,et al.  Evolution of B2(ω) region in high-Nb containing TiAl alloy in intermediate temperature range , 2017 .

[3]  Junpin Lin,et al.  Effects of trace alloying elements on the phase transformation behaviors of ordered ω phases in high Nb-TiAl alloys , 2017 .

[4]  D. Shan,et al.  Investigation of the phase transformations in Ti-22Al-25Nb alloy , 2016 .

[5]  D. Kent,et al.  New insights into the phase transformations to isothermal ω and ω-assisted α in near β-Ti alloys , 2016 .

[6]  Ruirun Chen,et al.  Microstructure evolution and mechanical properties of directionally-solidified TiAlNb alloy in different temperature gradients , 2015 .

[7]  Ruirun Chen,et al.  Deformation behavior and microstructural evolution of directionally solidified TiAlNb-based alloy during thermo-compression at 1373–1573 K , 2015 .

[8]  C. Tasan,et al.  Deformation mechanism of ω-enriched Ti–Nb-based gum metal: Dislocation channeling and deformation induced ω–β transformation , 2015 .

[9]  T. Lookman,et al.  Phase-field modeling of the beta to omega phase transformation in Zr–Nb alloys , 2015 .

[10]  Yanli Wang,et al.  ωo phase precipitation in annealed high Nb containing TiAl alloys , 2015 .

[11]  J. Lin,et al.  Phase transformation and decomposition mechanisms of the βo(ω) phase in cast high Nb containing TiAl alloy , 2014 .

[12]  Rui Yang,et al.  Theoretical investigation of the omega-related phases in TiAl-Nb/Mo alloys , 2014 .

[13]  J. Lin,et al.  Cooling rate effects on the microstructure evolution in the βo zones of cast Ti–45Al–8.5Nb–(W, B, Y) alloy , 2014 .

[14]  Zaoli Zhang,et al.  Evolution of the ωo phase in a β-stabilized multi-phase TiAl alloy and its effect on hardness , 2014 .

[15]  D. Ping Review on ω Phase in Body-Centered Cubic Metals and Alloys , 2014, Acta Metallurgica Sinica (English Letters).

[16]  M. Mitsuhara,et al.  HAADF-STEM studies of athermal and isothermal ω-phases in β-Zr alloy , 2013 .

[17]  J. Lin,et al.  Omega phase in as-cast high-Nb-containing TiAl alloy , 2013 .

[18]  Ruirun Chen,et al.  Influence of oxygen on microstructure and mechanical properties of directionally solidified Ti–47Al–2Cr–2Nb alloy , 2012 .

[19]  A. Huang,et al.  Grain refinement in beta-solidifying Ti44Al8Nb1B , 2012 .

[20]  G. Ananthakrishna,et al.  On the athermal nature of the β to ω transformation , 2012 .

[21]  A. Stark,et al.  In Situ Observation of Various Phase Transformation Paths in Nb‐Rich TiAl Alloys during Quenching with Different Rates , 2011 .

[22]  M. Jackson,et al.  β Phase decomposition in Ti–5Al–5Mo–5V–3Cr , 2009 .

[23]  Z. W. Huang Ordered ω phases in a 4Zr–4Nb-containing TiAl-based alloy , 2008 .

[24]  Xinhua Wu Review of alloy and process development of TiAl alloys , 2006 .

[25]  D. Lassila,et al.  Shock-induced deformation twinning and omega transformation in tantalum and tantalum–tungsten alloys , 2000 .

[26]  G. Shao,et al.  On the ω phase formation in Cr–Al and Ti–Al–Cr alloys , 2000 .

[27]  Samar K. Das,et al.  A high-resolution transmission electron microscopy study of interfaces between the γ, B2, and α2 phases in a Ti-Al-Mo alloy , 1996 .

[28]  W. Boettinger,et al.  The formation of ordered ω-related phases in alloys of composition Ti4Al3Nb , 1990 .

[29]  Dosch,et al.  Point-defect-induced nucleation of the omega phase. , 1986, Physical review. B, Condensed matter.

[30]  Y. Vohra,et al.  Omega phase in materials , 1982 .

[31]  T. Kuan,et al.  The structure of a linear omega-like vacancy defect in Zr-Nb B.C.C. solid solutions , 1976 .