A Review of Ghost Imaging via Sparsity Constraints

Different from conventional imaging methods, which are based on the first-order field correlation, ghost imaging (GI) obtains the image information through high-order mutual-correlation of light fields from two paths with an object appearing in only one path. As a new optical imaging technology, GI not only provides us new capabilities beyond the conventional imaging methods, but also gives out a new viewpoint of imaging physical mechanism. It may be applied to many potential applications, such as remote sensing, snap-shot spectral imaging, thermal X-ray diffraction imaging and imaging through scattering media. In this paper, we reviewed mainly our research work of ghost imaging via sparsity constraints (GISC) and discussed the application and theory prospect of GISC concisely.

[1]  L. Mandel,et al.  Coherence Properties of Optical Fields , 1965 .

[2]  Gitta Kutyniok,et al.  1 . 2 Sparsity : A Reasonable Assumption ? , 2012 .

[3]  Jeffrey H. Shapiro,et al.  The physics of ghost imaging , 2012, Quantum Information Processing.

[4]  龚文林 Gong Wenlin,et al.  Ghost Imaging for Moving Targets and Its Application in Remote Sensing , 2012 .

[5]  Paul A. Wilford,et al.  Lensless imaging by compressive sensing , 2013, 2013 IEEE International Conference on Image Processing.

[6]  Marzio Giglio,et al.  X-ray-scattering information obtained from near-field speckle , 2008 .

[7]  Shensheng Han,et al.  Spatial multiplexing reconstruction for Fourier-transform ghost imaging via sparsity constraints. , 2018, Optics express.

[8]  Enrong Li,et al.  Ghost imaging of a moving target with an unknown constant speed , 2014 .

[9]  J. Shapiro,et al.  Ghost imaging: from quantum to classical to computational , 2010 .

[10]  Philip Garcia,et al.  Nonscanned ladar imaging and applications , 1993, Defense, Security, and Sensing.

[11]  Chiye Li,et al.  Single-shot compressed ultrafast photography at one hundred billion frames per second , 2014, Nature.

[12]  Shensheng Han,et al.  Coherent Ghost Imaging based on sparsity constraint without phase-sensitive detection , 2012 .

[13]  Peng Wang,et al.  Ultra-high-sensitivity color imaging via a transparent diffractive-filter array and computational optics , 2015 .

[14]  E. Wolf Coherence properties of partially polarized electromagnetic radiation , 1959 .

[15]  Yuxin Chen,et al.  Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems , 2015, NIPS.

[16]  Yonina C. Eldar,et al.  Phase Retrieval with Application to Optical Imaging: A contemporary overview , 2015, IEEE Signal Processing Magazine.

[17]  R. Glauber The Quantum Theory of Optical Coherence , 1963 .

[18]  Richard G. Baraniuk,et al.  1-Bit compressive sensing , 2008, 2008 42nd Annual Conference on Information Sciences and Systems.

[19]  Ling-An Wu,et al.  Lensless ghost imaging with true thermal light. , 2009, Optics letters.

[20]  Liang Gao,et al.  Compact Image Slicing Spectrometer (ISS) for hyperspectral fluorescence microscopy. , 2009, Optics express.

[21]  Ashwin A. Wagadarikar,et al.  Single disperser design for coded aperture snapshot spectral imaging. , 2008, Applied optics.

[22]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[23]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[24]  Shensheng Han,et al.  A two-step phase-retrieval method in Fourier-transform ghost imaging , 2008 .

[25]  Ashok Veeraraghavan,et al.  Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope , 2017, Science Advances.

[26]  O. Bunk,et al.  High-Resolution Scanning X-ray Diffraction Microscopy , 2008, Science.

[27]  E. Wolf Optics in terms of observable quantities , 1954 .

[28]  Shensheng Han,et al.  Microscopy for Atomic and Magnetic Structures Based on Thermal Neutron Fourier-transform Ghost Imaging , 2018, 1801.10046.

[29]  Michael W. Kudenov,et al.  Faceted grating prism for a computed tomographic imaging spectrometer , 2012 .

[30]  Vahid Tarokh,et al.  Shannon-Theoretic Limits on Noisy Compressive Sampling , 2007, IEEE Transactions on Information Theory.

[31]  R. Cortes-Huerto,et al.  Gold Nanoparticle Internal Structure and Symmetry Probed by Unified Small-Angle X-ray Scattering and X-ray Diffraction Coupled with Molecular Dynamics Analysis. , 2015, Nano letters.

[32]  Ling-An Wu,et al.  Correlated two-photon imaging with true thermal light. , 2005, Optics letters.

[33]  Changhuei Yang,et al.  Translation correlations in anisotropically scattering media , 2014, 1411.7157.

[34]  Laura Waller,et al.  DiffuserCam: Lensless Single-exposure 3D Imaging , 2017, ArXiv.

[35]  Wenlin Gong,et al.  A method to improve the visibility of ghost images obtained by thermal light , 2010 .

[36]  Li Feng,et al.  High-peak-power, single-mode, nanosecond pulsed, all-fiber laser for high resolution 3D imaging LIDAR system , 2012 .

[37]  Giglio,et al.  Space intensity correlations in the near field of the scattered light: A direct measurement of the density correlation function g(r) , 2000, Physical review letters.

[38]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[39]  J. Bertolotti,et al.  Non-invasive imaging through opaque scattering layers , 2012, Nature.

[40]  Charles Elachi,et al.  Spaceborne Radar Remote Sensing: Applications and Techniques , 1987 .

[41]  M. D. de Jonge,et al.  Fresnel coherent diffractive imaging. , 2006, Physical review letters.

[42]  Liang Gao,et al.  A review of snapshot multidimensional optical imaging: measuring photon tags in parallel. , 2016, Physics reports.

[43]  Zhang Fe Phase retrieval from coded diffraction patterns , 2015 .

[44]  J. Perrin,et al.  Optical surface roughness determination using speckle correlation technique. , 1975, Applied optics.

[45]  Shensheng Han,et al.  Incoherent coincidence imaging and its applicability in X-ray diffraction. , 2004, Physical review letters.

[46]  Takeo Kanade,et al.  Limits on super-resolution and how to break them , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[47]  Wenlin Gong,et al.  Ghost imaging lidar via sparsity constraints , 2012, 1203.3835.

[48]  Shensheng Han,et al.  Spatial longitudinal coherence length of a thermal source and its influence on lensless ghost imaging. , 2008, Optics letters.

[49]  Yigong Shi A Glimpse of Structural Biology through X-Ray Crystallography , 2014, Cell.

[50]  Experimental observation of one-dimensional quantum holographic imaging , 2013, 1301.6577.

[51]  Wenlin Gong,et al.  Phase-retrieval ghost imaging of complex-valued objects , 2010 .

[52]  Wenlin Gong,et al.  Ghost “pinhole” imaging in Fraunhofer region , 2009 .

[53]  R. H. Brown,et al.  The Question of Correlation between Photons in Coherent Light Rays , 1956, Nature.

[54]  Feng,et al.  Correlations and fluctuations of coherent wave transmission through disordered media. , 1988, Physical review letters.

[55]  Colin J R Sheppard,et al.  Resolution and super‐resolution , 2017, Microscopy research and technique.

[56]  D. Psaltis,et al.  Imaging blood cells through scattering biological tissue using speckle scanning microscopy. , 2013, Optics express.

[57]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[58]  A. Bhatia,et al.  On the circle polynomials of Zernike and related orthogonal sets , 1954, Mathematical Proceedings of the Cambridge Philosophical Society.

[59]  J. Farrell,et al.  The global positioning system and inertial navigation , 1999 .

[60]  Garth J. Williams,et al.  Three-dimensional mapping of a deformation field inside a nanocrystal , 2006, Nature.

[61]  A. G. Cullis,et al.  Hard-x-ray lensless imaging of extended objects. , 2007, Physical review letters.

[62]  J R Fienup,et al.  Reconstruction of an object from the modulus of its Fourier transform. , 1978, Optics letters.

[63]  Shensheng Han,et al.  Fourier-Transform Ghost Imaging with Hard X Rays. , 2016, Physical review letters.

[64]  Xiaobai Sun,et al.  Spectral image estimation for coded aperture snapshot spectral imagers , 2008, Optical Engineering + Applications.

[65]  Ioannis N. Papadopoulos,et al.  The generalized optical memory effect , 2017, 1705.01373.

[66]  Shensheng Han,et al.  Quantum limits of super-resolution of optical sparse objects via sparsity constraint. , 2012, Optics express.

[67]  Enrong Li,et al.  The study of spectral camera based on ghost imaging via sparsity constraints with sunlight illumination , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[68]  D. G. Kocher,et al.  Three-Dimensional Imaging Laser Radars with Geiger-Mode Avalanche Photodiode Arrays , 2002 .

[69]  M.K. Masten,et al.  Inertially stabilized platforms for optical imaging systems , 2008, IEEE Control Systems.

[70]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[71]  Garth J. Williams,et al.  Keyhole coherent diffractive imaging , 2008 .

[72]  Manoj Kumar,et al.  3D Imaging through Scatterers with Interferenceless Optical System , 2018, Scientific Reports.

[73]  J. Miao,et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens , 1999, Nature.

[74]  Ling-An Wu,et al.  Lensless ghost imaging with sunlight. , 2014, Optics letters.

[75]  D. Field,et al.  Natural image statistics and efficient coding. , 1996, Network.

[76]  J. Tour,et al.  Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons , 2009, Nature.

[77]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[78]  Chenggong Zhang,et al.  Vulnerability to ciphertext-only attack of optical encryption scheme based on double random phase encoding. , 2015, Optics express.

[79]  O. Katz,et al.  Looking around corners and through thin turbid layers in real time with scattered incoherent light , 2012, Nature Photonics.

[80]  Sujit Kumar Sahoo,et al.  Single-shot multispectral imaging with a monochromatic camera , 2017 .

[82]  Xiaodong Li,et al.  Phase Retrieval via Wirtinger Flow: Theory and Algorithms , 2014, IEEE Transactions on Information Theory.

[83]  W. H. Benner,et al.  Femtosecond diffractive imaging with a soft-X-ray free-electron laser , 2006, physics/0610044.

[84]  龚文林 Gong Wenlin,et al.  Experimental Research on Prebuilt Three-Dimensional Imaging Lidar , 2016 .

[85]  Henry Arguello,et al.  Compressive Coded Aperture Spectral Imaging: An Introduction , 2014, IEEE Signal Processing Magazine.

[86]  Guohua Wu,et al.  Negative exponential behavior of image mutual information for pseudo-thermal light ghost imaging: observation, modeling, and verification. , 2017, Science bulletin.

[87]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[88]  V. Degiorgio,et al.  About photon correlations , 2013 .

[89]  A. Gatti,et al.  Differential ghost imaging. , 2010, Physical review letters.

[90]  Zhishen Tong,et al.  Spectral Camera based on Ghost Imaging via Sparsity Constraints , 2015, Scientific Reports.

[91]  Y. Shih,et al.  Two-photon "ghost" imaging with thermal light , 2004, 2005 Quantum Electronics and Laser Science Conference.

[92]  Jian Wang,et al.  Optimization of light field fluctuation patterns in ghost imaging by mutual coherence minimization based on dictionary learning , 2018 .

[93]  Wang Li,et al.  Airborne Near Infrared Three-Dimensional Ghost Imaging LiDAR via Sparsity Constraint , 2018, Remote. Sens..

[94]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[95]  J. Walkup,et al.  Statistical optics , 1986, IEEE Journal of Quantum Electronics.

[96]  M. Fink,et al.  Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations , 2014, Nature Photonics.

[97]  Shensheng Han,et al.  Lensless Wiener–Khinchin telescope based on second-order spatial autocorrelation of thermal light , 2018, Chinese Optics Letters.

[98]  R. H. Brown,et al.  Correlation between Photons in two Coherent Beams of Light , 1956, Nature.

[99]  Wenlin Gong,et al.  The influence of axial correlation depth of light field on lensless ghost imaging , 2010 .

[100]  Enrong Li,et al.  Structured image reconstruction for three-dimensional ghost imaging lidar. , 2015, Optics express.

[101]  Jianying Zhou,et al.  High speed color imaging through scattering media with a large field of view , 2016, Scientific Reports.

[102]  Esko Herrala,et al.  Imaging spectrometer for process industry applications , 1994, Other Conferences.

[103]  Yu Oishi,et al.  Sequentially timed all-optical mapping photography (STAMP) , 2014, Nature Photonics.

[104]  Michael W. Kudenov,et al.  Review of snapshot spectral imaging technologies , 2013, Optics and Precision Engineering.

[105]  Shih,et al.  Observation of two-photon "ghost" interference and diffraction. , 1995, Physical review letters.

[106]  Aswin C. Sankaranarayanan,et al.  FlatCam: Thin, Lensless Cameras Using Coded Aperture and Computation , 2017, IEEE Transactions on Computational Imaging.

[107]  O. Katz,et al.  Compressive ghost imaging , 2009, 0905.0321.

[108]  Guihua Zeng,et al.  Lensless ghost imaging for moving objects , 2011 .

[109]  Babak Hassibi,et al.  Sparse Phase Retrieval: Uniqueness Guarantees and Recovery Algorithms , 2013, IEEE Transactions on Signal Processing.

[110]  Wenlin Gong,et al.  Three-dimensional ghost imaging lidar via sparsity constraint , 2016, Scientific Reports.

[111]  Wenlin Gong,et al.  Ghost imaging for an axially moving target with an unknown constant speed , 2015 .

[112]  A. Gatti,et al.  Ghost imaging with thermal light: comparing entanglement and classical correlation. , 2003, Physical review letters.