A Superconvergent Ensemble HDG Method for Parameterized Convection Diffusion Equations

In this paper, we first devise an ensemble hybridizable discontinuous Galerkin (HDG) method to efficiently simulate a group of parameterized convection diffusion PDEs. These PDEs have different coefficients, initial conditions, source terms and boundary conditions. The ensemble HDG discrete system shares a common coefficient matrix with multiple right hand side (RHS) vectors; it reduces both computational cost and storage. We have two contributions in this paper. First, we derive an optimal $L^2$ convergence rate for the ensemble solutions on a general polygonal domain, which is the first such result in the literature. Second, we obtain a superconvergent rate for the ensemble solutions after an element-by-element postprocessing under some assumptions on the domain and the coefficients of the PDEs. We present numerical experiments to confirm our theoretical results.

[1]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[2]  Bernardo Cockburn,et al.  Devising HDG methods for Stokes flow: An overview , 2014 .

[3]  B. Cockburn,et al.  Symplectic Hamiltonian HDG methods for wave propagation phenomena , 2017, J. Comput. Phys..

[4]  Sander Rhebergen,et al.  A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains , 2012, J. Comput. Phys..

[5]  J. A. Fiordilino,et al.  A Second Order Ensemble Timestepping Algorithm for Natural Convection , 2017, SIAM J. Numer. Anal..

[6]  Yanlai Chen,et al.  Analysis of variable-degree HDG methods for Convection-Diffusion equations. Part II: Semimatching nonconforming meshes , 2013, Math. Comput..

[7]  Weifeng Qiu,et al.  An analysis of HDG methods for convection dominated diffusion problems , 2013, 1310.0887.

[8]  Hoang Tran,et al.  Analysis of a Stabilized CNLF Method with Fast Slow Wave Splittings for Flow Problems , 2015, Comput. Methods Appl. Math..

[9]  Giancarlo Sangalli,et al.  Analysis of a Multiscale Discontinuous Galerkin Method for Convection-Diffusion Problems , 2006, SIAM J. Numer. Anal..

[10]  Zhu Wang,et al.  An Ensemble Algorithm for Numerical Solutions to Deterministic and Random Parabolic PDEs , 2017, SIAM J. Numer. Anal..

[11]  Weifeng Qiu,et al.  Robust a posteriori error estimates for HDG method for convection–diffusion equations , 2014, 1406.2163.

[12]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[13]  Ke Shi,et al.  An HDG Method for Convection Diffusion Equation , 2016, J. Sci. Comput..

[14]  Bernardo Cockburn,et al.  Interpolatory HDG Method for Parabolic Semilinear PDEs , 2018, Journal of Scientific Computing.

[15]  Zhu Wang,et al.  A Second-Order Time-Stepping Scheme for Simulating Ensembles of Parameterized Flow Problems , 2017, Comput. Methods Appl. Math..

[16]  Francisco-Javier Sayas,et al.  Analysis of HDG methods for Stokes flow , 2010, Math. Comput..

[17]  Max D. Gunzburger,et al.  An Ensemble-Proper Orthogonal Decomposition Method for the Nonstationary Navier-Stokes Equations , 2016, SIAM J. Numer. Anal..

[18]  Jiajia Waters,et al.  Time relaxation algorithm for flow ensembles , 2016 .

[19]  Miloslav Feistauer,et al.  Theory of the Space-Time Discontinuous Galerkin Method for Nonstationary Parabolic Problems with Nonlinear Convection and Diffusion , 2012, SIAM J. Numer. Anal..

[20]  Jim Douglas,et al.  The effect of interpolating the coefficients in nonlinear parabolic Galerkin procedures , 1975 .

[21]  Francisco-Javier Sayas,et al.  Divergence-conforming HDG methods for Stokes flows , 2014, Math. Comput..

[22]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[23]  Zhu Wang,et al.  An efficient algorithm for simulating ensembles of parameterized flow problems , 2017, 1705.09350.

[24]  J. M. Sanz-Serna,et al.  Interpolation of the Coefficients in Nonlinear Elliptic Galerkin Procedures , 1984 .

[25]  Nan Jiang,et al.  Numerical analysis of two ensemble eddy viscosity numerical regularizations of fluid motion , 2015 .

[26]  Yanlai Chen,et al.  Analysis of variable-degree HDG methods for convection–diffusion equations. Part I: general nonconforming meshes , 2012 .

[27]  Bernardo Cockburn,et al.  Superconvergent Interpolatory HDG Methods for Reaction Diffusion Equations I: An HDGk Method , 2019, J. Sci. Comput..

[28]  KE SHI CONDITIONS FOR SUPERCONVERGENCE OF HDG METHODS FOR STOKES FLOW , 2013 .

[29]  Nan Jiang,et al.  A higher-order ensemble/proper orthogonal decomposition method for the nonstationary Navier-Stokes equations , 2017 .

[30]  Sander Rhebergen,et al.  A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations , 2013, J. Comput. Phys..

[31]  J. Peraire,et al.  An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation , 2016 .

[32]  J. Peraire,et al.  HDG Methods for Hyperbolic Problems , 2016 .

[33]  Francisco-Javier Sayas,et al.  A projection-based error analysis of HDG methods , 2010, Math. Comput..

[34]  Nan Jiang,et al.  A second‐order ensemble method based on a blended backward differentiation formula timestepping scheme for time‐dependent Navier–Stokes equations , 2017, 2104.06589.

[35]  Nan Jiang,et al.  AN ALGORITHM FOR FAST CALCULATION OF FLOW ENSEMBLES , 2014 .

[36]  Bernardo Cockburn,et al.  Analysis of HDG Methods for Oseen Equations , 2013, J. Sci. Comput..

[37]  Nan Jiang,et al.  A Higher Order Ensemble Simulation Algorithm for Fluid Flows , 2015, J. Sci. Comput..

[38]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..