Titanium nitride as a plasmonic material for visible and near-infrared wavelengths

The search for alternative plasmonic materials with improved optical properties, easier fabrication and integration capabilities over those of the traditional materials such as silver and gold could ultimately lead to real-life applications for plasmonics and metamaterials. In this work, we show that titanium nitride could perform as an alternative plasmonic material in the visible and near-infrared regions. We demonstrate the excitation of surface-plasmon-polaritons on titanium nitride thin films and discuss the performance of various plasmonic and metamaterial structures with titanium nitride as the plasmonic component. We also show that titanium nitride could provide performance that is comparable to that of gold for plasmonic applications and can significantly outperform gold and silver for transformation-optics and some metamaterial applications in the visible and near-infrared regions.

[1]  Transforming light , 2014 .

[2]  A. Kildishev,et al.  Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials , 2012, Proceedings of the National Academy of Sciences.

[3]  Zubin Jacob,et al.  Broadband Purcell effect: Radiative decay engineering with metamaterials , 2009, 0910.3981.

[4]  A. Kildishev,et al.  Negative refraction in Al:ZnO/ZnO metamaterial in the near-infrared , 2011, 1110.3231.

[5]  Martin Wegener,et al.  Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials [Invited] , 2011 .

[6]  A. Boltasseva,et al.  A comparative study of semiconductor-based plasmonic metamaterials , 2011, 1108.1531.

[7]  A. Boltasseva,et al.  Oxides and nitrides as alternative plasmonic materials in the optical range , 2011, 1108.0993.

[8]  Viktor A. Podolskiy,et al.  Transparent conductive oxides: Plasmonic materials for telecom wavelengths , 2011 .

[9]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[10]  Alexandra Boltasseva,et al.  Semiconductors for plasmonics and metamaterials , 2010, 1108.1529.

[11]  E. E. Narimanov,et al.  Engineering photonic density of states using metamaterials , 2010, 1005.5172.

[12]  Alexander V. Kildishev,et al.  The validation of the parallel three-dimensional solver for analysis of optical plasmonic bi-periodic multilayer nanostructures , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[13]  J. Pendry,et al.  Three-Dimensional Invisibility Cloak at Optical Wavelengths , 2010, Science.

[14]  M. Cortie,et al.  Optical properties and plasmon resonances of titanium nitride nanostructures , 2010, Nanotechnology.

[15]  Kuo-Ping Chen,et al.  Drude relaxation rate in grained gold nanoantennas. , 2010, Nano letters.

[16]  Vladimir M. Shalaev,et al.  Optical Metamaterials: Fundamentals and Applications , 2009 .

[17]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[18]  A. Kildishev,et al.  Optical black hole: Broadband omnidirectional light absorber , 2009 .

[19]  V. Shalaev Transforming Light , 2008, Science.

[20]  U. Chettiar,et al.  The Ag dielectric function in plasmonic metamaterials. , 2008, Optics express.

[21]  A. Kildishev,et al.  Engineering space for light via transformation optics. , 2007, Optics letters.

[22]  Alexander V. Kildishev,et al.  PhotonicsDB: Optical Constants , 2007 .

[23]  Leonid Alekseyev,et al.  Supplementary Information for “ Negative refraction in semiconductor metamaterials ” , 2007 .

[24]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[25]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[26]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[27]  M. Wegener,et al.  Negative Refractive Index at Optical Wavelengths , 2007, Science.

[28]  Vladimir M. Shalaev,et al.  Optical cloaking with metamaterials , 2006, physics/0611242.

[29]  V. Podolskiy,et al.  Nonlocal effects in effective medium response of nanolayered metamaterials , 2006, 2007 Quantum Electronics and Laser Science Conference.

[30]  M. Wegener,et al.  Negative-index metamaterial at 780 nm wavelength. , 2006, Optics letters.

[31]  Pierre Berini,et al.  Figures of merit for surface plasmon waveguides. , 2006, Optics express.

[32]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[33]  Z. Jacob,et al.  Optical Hyperlens: Far-field imaging beyond the diffraction limit. , 2006, Optics express.

[34]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[35]  J. Dionne,et al.  Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization , 2006 .

[36]  V. Podolskiy,et al.  Strongly anisotropic waveguide as a nonmagnetic left-handed system , 2005 .

[37]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[38]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[39]  S. Aouadi,et al.  Optical properties of tantalum nitride films fabricated using reactive unbalanced magnetron sputtering , 2004 .

[40]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[41]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[42]  J. Pendry,et al.  Imaging the near field , 2002, cond-mat/0207026.

[43]  Yan-Ru Lin,et al.  Heteroepitaxial TiN of Very Low Mosaic Spread on Al2O3 , 2003 .

[44]  Heung-Jae Cho,et al.  Robust ternary metal gate electrodes for dual gate CMOS devices , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[45]  Stergios Logothetidis,et al.  Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films , 2001 .

[46]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[47]  T. Minami New n-Type Transparent Conducting Oxides , 2000 .

[48]  Christopher Robert Lawrence,et al.  Surface plasmon-polariton study of the optical dielectric function of titanium nitride , 1998 .

[49]  Julien,et al.  Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 microm. , 1992, Physical review. B, Condensed matter.

[50]  Ross C. McPhedran,et al.  Optical properties and microstructure of thin silver films , 1991 .

[51]  M. Leskelä,et al.  Nitrides of titanium, niobium, tantalum and molybdenum grown as thin films by the atomic layer epitaxy method☆ , 1988 .

[52]  A. Rockett,et al.  Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering , 1985 .

[53]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .