Absolute cross-section measurements in XQQ instruments: Ar+ + N2 → Ar + N+2

[1]  J. Vine,et al.  Quantification of leukotriene B4 in synovial fluid by gas chromatography/tandem mass spectrometry. , 1988, Biomedical & environmental mass spectrometry.

[2]  R. Boyd,et al.  Reaction-induced mass discrimination in XQQ instruments. Absolute cross-sections for N2+˙ + SF6 → N2 + SFx+ (x=1-5) , 1988 .

[3]  G. Parlant,et al.  Theoretical state‐to‐state inelastic cross sections for collisions of Ar+(2P3/2, 2P1/2) with N2 , 1988 .

[4]  R. Boyd,et al.  Instrument‐independent tandem mass spectrometry database for XQQ instruments: The dynamical prerequisites , 1988 .

[5]  R. Boyd,et al.  A comparison of three experimental techniques for ion structure studies via collision‐induced reactions: The [C5H8]+˙ example , 1987 .

[6]  R. Martinez The NBS triple quadrupole tandem mass spectrometer , 1987 .

[7]  G. Parlant,et al.  Theoretical state‐to‐state charge transfer cross sections for collisions of Ar+ (2P3/2, 2P1/2) with N2 , 1987 .

[8]  R. Martinez,et al.  Validation of absolute target thickness calibrations in a QQQ instrument by measuring absolute total cross-sections of Ne+ (Ne, Ne) Ne+ , 1986 .

[9]  J. Shao,et al.  Absolute spin-orbit-state excitation cross sections for the reactions Ar+(2 P32) + Ar(1S0) and Ar+(2P32) + N2 (X, v = 0) , 1986 .

[10]  M. Gross,et al.  Structures of gas phase C5H8 radical cations: A collisional ionization study , 1986 .

[11]  J. Shao,et al.  A state‐to‐state study of the electron transfer reactions Ar+(2P3/2,1/2)+N2(X̃,v=0)→Ar(1S0) +N+2(X̃,v’) , 1986 .

[12]  P. Dawson,et al.  Dissociation of the benzene ion by low energy collisions , 1986 .

[13]  C. Ng,et al.  Fine structure effect on the charge transfer reaction of Ar+(2P3/2,1/2)+N2 (X̃ 1Σ+g, v=0) , 1986 .

[14]  J. Beynon,et al.  Collision-induced dissociations of ions from zero to 4 keV translational energy in a single apparatus , 1985 .

[15]  C. Ng,et al.  A state‐to‐state study of the symmetric charge transfer reaction Ar+(2P3/2,1/2)+Ar(1S0) , 1985 .

[16]  R. Hyland,et al.  Zero stability and calibration results for a group of capacitance diaphragm gages , 1985 .

[17]  J. Sullivan Development of variable capacitance pressure transducers for vacuum applications , 1985 .

[18]  E. Gislason,et al.  Theoretical state-to-state cross sections for the Ar++ N2 ⇌ Ar + N2+ system , 1985 .

[19]  S. Leone,et al.  Laser-induced fluorescence measurement of nascent vibrational and rotational product state distributions in the charge transfer of Ar++N2→Ar+N+2 (v=0,1) at 0.2 eV , 1984 .

[20]  P. F. Knewstubb,et al.  Integral cross-section measurement for rare gas ion/atom collisions , 1984 .

[21]  M. Hamdan,et al.  Energy dependence of the reactions of Ar+·(2P12) and Ar+·(2P32) with N2 , 1984 .

[22]  J. Futrell,et al.  A crossed beam study of the charge‐transfer reaction of Ar+ with N2 at low and intermediate energies , 1984 .

[23]  P. Dawson,et al.  A round robin on the reproducibility of standard operating conditions for the acquisition of library MS/MS spectra using triple quadrupoles , 1984 .

[24]  R. Cooks,et al.  Gas-phase thermochemical information from triple quadrupole mass spectrometers: Relative proton affinities of amines , 1983 .

[25]  P. Dawson A study of the collision-induced dissociation of C2H5OH2+ using various target gases , 1983 .

[26]  D. J. Douglas,et al.  Studies of the mechanism of collision induced dissociation at low energies using a triple quadrupole , 1983 .

[27]  D. J. Douglas,et al.  The role of kinetic energy in triple quadrupole collision induced dissociation (CID) experiments , 1983 .

[28]  P. Dawson,et al.  Comparison of low-energy collisionally induced dissociation of n-butyl benzene ions with photodissociation , 1982 .

[29]  P. Dawson The collision-induced dissociation of protonated water clusters studied using a triple quadrupole , 1982 .

[30]  Ken'ichiro Tanaka,et al.  State selected ion–molecule reactions by a TESICO technique. IV. Relative importance of the two spin‐orbit states of Ar+ in the charge transfer reactions with N2 and CO , 1982 .

[31]  W. Lindinger,et al.  Energy dependencies of the reactions of Ar+ with H2, N2, CO, O2, CO2, N2O, and COS , 1982 .

[32]  D. J. Douglas,et al.  The use of triple quadrupoles for sequential mass spectrometry: 2—A detailed case study , 1982 .

[33]  P. Dawson,et al.  The effective containment of parent ions and daughter ions in triple quadrupoles used for collisional dissociation , 1982 .

[34]  R. Cooks,et al.  Relative gas-phase acidities from triple quadrupole mass spectrometers , 1982 .

[35]  D. J. Douglas Mechanism of the collision-induced dissociation of polyatomic ions studied by triple quadrupole mass spectrometry , 1982 .

[36]  N. Kobayashi,et al.  Fine-Structure Transitions in Ar + ( 2 P j )+Ar( 1 S 0 ) Collisions in the Energy Range 60 eV–1500 eV , 1981 .

[37]  T. Matsuo,et al.  Study of Low Energy Charge Transfer Reactions of Metastable Ar Ions with Ar, Kr and Xe Atoms by Time-of-Flight Technique , 1981 .

[38]  H. Villinger,et al.  Charge transfer of Ar + + N 2 ⇄ N 2 + + Ar at near thermal energies , 1981 .

[39]  N. Adams,et al.  Charge-transfer reaction Ar + + N 2 ⇄N + 2 + Ar at thermal energies , 1981 .

[40]  R. Browning,et al.  Symmetric charge transfer in argon, krypton and xenon: the effect of spin-orbit coupling studied using photoelectron-photoion coincidence spectroscopy , 1981 .

[41]  T. Märk,et al.  Molecular ion formation in decaying plasmas produced in pure argon and krypton , 1981 .

[42]  T. Matsuo,et al.  Study of Low Energy Charge Transfer Reactions of Metastable Argon Ions with Argon Atoms by Time-of-Flight Technique , 1980 .

[43]  W. E. Falconer,et al.  Fine-structure transitions during charge transfer in argon , 1980 .

[44]  P. Dawson Ion Optical Properties of Quadrupole Mass Filters , 1980 .

[45]  P. Dawson Energetics of ions in quadrupole fields , 1976 .

[46]  K. Kadota,et al.  Neutralization Method for Detection of Metastable Ions and Its Application to the Production of Metastable Rare Gas Ions by Electron Impact , 1975 .

[47]  W. E. Falconer,et al.  Crossed‐molecular‐beam study of the kinematics and dynamics of charge‐transfer collisions , 1974 .

[48]  N. Hishinuma Relative Charge Transfer Efficiencies of 2 P 3/2 and 2 P 1/2 Rare-Gas Ions in Their Own Gases , 1972 .

[49]  K. Birkinshaw,et al.  Inelastic collisions between atomic ions and diatomic molecules , 1971 .

[50]  T. F. Moran,et al.  Application of the Statistical Phase‐Space Theory to the Reactions of Rare‐Gas Ions with Nitrogen Molecules , 1971 .

[51]  J. Paulson,et al.  Study of ion—neutral reactions with a time-of-flight double mass spectrometer☆ , 1970 .

[52]  F. Fehsenfeld,et al.  Temperature Dependences of the Rate Coefficients for the Reactions of Ar+ with O2, H2, and D2 , 1970 .

[53]  I. Kanomata,et al.  Low Energy Ion-Neutral Reactions. I. 22Ne++20Ne, and Ar++N2 , 1969 .

[54]  P. P. Ong,et al.  Drift measurements of ion-molecule reactions , 1969 .

[55]  F. Fehsenfeld,et al.  Thermal‐Energy Ion—Neutral Reaction Rates. VI. Some Ar+ Charge‐Transfer Reactions , 1966 .

[56]  R. Lehrle,et al.  Ion-molecule reactions in the gas phase. Change transfer studied at translational energies up to 2000 eV , 1966 .

[57]  R. Amme,et al.  Ion‐Beam Excitation Effects on the Single Charge Transfer between Argon and Nitrogen , 1965 .

[58]  H. D. Hagstrum Detection of Metastable Atoms and Ions , 1960 .

[59]  W. F. Sheridan,et al.  Experimental Determinations of Charge Transfer Cross Sections and Secondary Electron Emission by Ion Bombardment , 1957 .