Spintronics and pseudospintronics in graphene and topological insulators.

The two-dimensional electron systems in graphene and in topological insulators are described by massless Dirac equations. Although the two systems have similar Hamiltonians, they are polar opposites in terms of spin-orbit coupling strength. We briefly review the status of efforts to achieve long spin-relaxation times in graphene with its weak spin-orbit coupling, and to achieve large current-induced spin polarizations in topological-insulator surface states that have strong spin-orbit coupling. We also comment on differences between the magnetic responses and dilute-moment coupling properties of the two systems, and on the pseudospin analogue of giant magnetoresistance in bilayer graphene.

[1]  A. Geim,et al.  Graphene: Exploring carbon flatland , 2007 .

[2]  E. J. Mele,et al.  Quantum spin Hall effect in graphene. , 2004, Physical review letters.

[3]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[4]  R. J. Elliott,et al.  Theory of the Effect of Spin-Orbit Coupling on Magnetic Resonance in Some Semiconductors , 1954 .

[5]  A. Gossard,et al.  Current-induced spin polarization in strained semiconductors. , 2004, Physical review letters.

[6]  Magnetic proximity effect as a pathway to spintronic applications of topological insulators. , 2011, Nano letters.

[7]  D. Pesin,et al.  Ordering of magnetic impurities and tunable electronic properties of topological insulators. , 2010, Physical review letters.

[8]  D. Ralph,et al.  Coupling of spin and orbital motion of electrons in carbon nanotubes , 2008, Nature.

[9]  O. Yazyev Emergence of magnetism in graphene materials and nanostructures , 2010, 1004.2034.

[10]  X. Hong,et al.  Colossal negative magnetoresistance in dilute fluorinated graphene , 2010, 1008.4387.

[11]  Suppression of the persistent spin Hall current by defect scattering , 2004, cond-mat/0402442.

[12]  A. Markelz,et al.  Terahertz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3. , 2011, Physical review letters.

[13]  Xiao-Liang Qi,et al.  Topological quantization in units of the fine structure constant. , 2010, Physical review letters.

[14]  Yize Jin,et al.  Topological insulators , 2014, Topology in Condensed Matter.

[15]  B. Beschoten,et al.  Observation of long spin-relaxation times in bilayer graphene at room temperature. , 2010, Physical review letters.

[16]  L. Fu,et al.  Surface states and topological invariants in three-dimensional topological insulators: Application to Bi 1 − x Sb x , 2008 .

[17]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[18]  M. Franz,et al.  Inverse Spin-Galvanic Effect in a Topological-Insulator/Ferromagnet Interface , 2009, 0911.0106.

[19]  J. Keinonen,et al.  Spin-half paramagnetism in graphene induced by point defects , 2011, Nature Physics.

[20]  Spin-Hall conductivity in a two-dimensional Rashba electron gas , 2005 .

[21]  S Takahashi,et al.  Room-temperature reversible spin Hall effect. , 2007, Physical review letters.

[22]  Wei Han,et al.  Spin relaxation in single-layer and bilayer graphene. , 2010, Physical review letters.

[23]  Xiao-Liang Qi,et al.  Magnetic impurities on the surface of a topological insulator. , 2008, Physical review letters.

[24]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[25]  E. Vescovo,et al.  Electronic and magnetic properties of quasifreestanding graphene on Ni. , 2008, Physical review letters.

[26]  F. Guinea,et al.  Spin-orbit-mediated spin relaxation in graphene. , 2008, Physical review letters.

[27]  Michael S. Fuhrer,et al.  Gate-tunable graphene spin valve , 2007 .

[28]  C. N. Lau,et al.  Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. , 2011, Nature nanotechnology.

[29]  Masaya Nishioka,et al.  Spin transport through multilayer graphene , 2007 .

[30]  P. San-Jose,et al.  Pseudospin valve in bilayer graphene: towards graphene-based pseudospintronics. , 2009, Physical review letters.

[31]  F. Guinea,et al.  Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps , 2006 .

[32]  F. Guinea,et al.  Impurity-induced spin-orbit coupling in graphene. , 2009, Physical review letters.

[33]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[34]  H. Ohno,et al.  Current-induced torques in magnetic materials. , 2012, Nature materials.

[35]  R. Raimondi,et al.  Spin-Hall effect in a disordered two-dimensional electron system , 2004, cond-mat/0408233.

[36]  Anomalous Hall effect in a two-dimensional Dirac band: The link between the Kubo-Streda formula and the semiclassical Boltzmann equation approach , 2006, cond-mat/0608682.

[37]  Wang-Kong Tse,et al.  Magneto-optical and magnetoelectric effects of topological insulators in quantizing magnetic fields , 2010, 1010.0240.

[38]  Y. Yafet g Factors and Spin-Lattice Relaxation of Conduction Electrons , 1963 .

[39]  F. Guinea,et al.  Elliot-Yafet mechanism in graphene. , 2011, Physical review letters.

[40]  T. Ando Spin-Orbit Interaction in Carbon Nanotubes , 2000 .

[41]  Zhong Fang,et al.  Spin-orbit gap of graphene: First-principles calculations , 2007 .

[42]  E. J. Mele,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[43]  D. Ralph,et al.  Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. , 2012, Physical review letters.

[44]  J. Sinova,et al.  Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. , 2004, Physical review letters.

[45]  J. Fabian,et al.  Band-structure topologies of graphene: Spin-orbit coupling effects from first principles , 2009, 0904.3315.

[46]  Ian Appelbaum,et al.  Silicon spintronics , 2009, 2009 10th International Conference on Ultimate Integration of Silicon.

[47]  Vladimir I Fal'ko,et al.  Landau-level degeneracy and quantum Hall effect in a graphite bilayer. , 2006, Physical review letters.

[48]  A. MacDonald,et al.  Ferromagnetic semiconductors: moving beyond (Ga,Mn)As , 2005, cond-mat/0503185.

[49]  A. Geim,et al.  Graphene Spin Valve Devices , 2006, IEEE Transactions on Magnetics.

[50]  J. E. Hill,et al.  Intrinsic and Rashba spin-orbit interactions in graphene sheets , 2006, cond-mat/0606504.

[51]  Mikhail I. Dyakonov Spin physics in semiconductors , 2008 .

[52]  Jin-Hua Gao,et al.  Giant mesoscopic spin Hall effect on the surface of topological insulator. , 2010, Physical review letters.

[53]  L. Molenkamp,et al.  Surface state charge dynamics of a high-mobility three-dimensional topological insulator. , 2011, Physical review letters.

[54]  Shou-Cheng Zhang,et al.  Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells , 2006, Science.

[55]  B. V. van Wees,et al.  Spin caloritronics. , 2011, Nature materials.

[56]  Shou-Cheng Zhang,et al.  Electrically controllable surface magnetism on the surface of topological insulators. , 2010, Physical review letters.

[57]  Michel Dyakonov,et al.  Current-induced spin orientation of electrons in semiconductors , 1971 .

[58]  A. Zyuzin,et al.  Thin topological insulator film in a perpendicular magnetic field , 2011, 1103.2142.

[59]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[60]  Jiadong Zang,et al.  Inducing a Magnetic Monopole with Topological Surface States , 2009, Science.

[61]  Wang-Kong Tse,et al.  Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators. , 2010, Physical review letters.

[62]  Luqiao Liu,et al.  Magnetic switching by spin torque from the spin Hall effect , 2011, 1110.6846.

[63]  M. Franz,et al.  Magnetoelectric response of the time-reversal invariant helical metal , 2010, 1003.2008.

[64]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[65]  J. Velasco,et al.  Stacking-dependent band gap and quantum transport in trilayer graphene , 2011 .

[66]  B. Wees,et al.  Electronic spin transport and spin precession in single graphene layers at room temperature , 2007, Nature.

[67]  B. V. van Wees,et al.  Anisotropic spin relaxation in graphene. , 2008, Physical review letters.

[68]  Roland Kawakami,et al.  Magnetotransport properties of mesoscopic graphite spin valves , 2008 .

[69]  C. Uher,et al.  Recent Advances in the Growth of Bi-Sb-Te-Se Thin Films , 2011 .

[70]  Ron Jansen,et al.  Silicon spintronics. , 2012, Nature materials.

[71]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[72]  S. Sarma,et al.  Anomalous Hall response of topological insulators , 2010, 1012.3459.

[73]  Wei Han,et al.  Tunneling spin injection into single layer graphene. , 2010, Physical review letters.

[74]  H. Drew,et al.  Far-infrared cyclotron resonance and Faraday effect in Bi 2 Se 3 , 2010, 1006.1008.

[75]  Xiao-Liang Qi,et al.  Topological field theory of time-reversal invariant insulators , 2008, 0802.3537.

[76]  B. Halperin,et al.  Spin current and polarization in impure two-dimensional electron systems with spin-orbit coupling. , 2004, Physical review letters.

[77]  S. V. Morozov,et al.  Dirac cones reshaped by interaction effects in suspended graphene , 2011 .

[78]  Michel Dyakonov Spin Hall Effect , 2009 .

[79]  Masashi Shiraishi,et al.  Spin injection into a graphene thin film at room temperature , 2007 .

[80]  H. Drew,et al.  Terahertz Kerr and reflectivity measurements on the topological insulator Bi 2 Se 3 , 2010, 1007.4482.

[81]  M. Franz,et al.  Inverse spin-galvanic effect in the interface between a topological insulator and a ferromagnet. , 2010, Physical review letters.

[82]  Su-Yang Xu,et al.  A topological insulator surface under strong Coulomb, magnetic and disorder perturbations , 2011, 1103.3411.

[83]  Zhongqin Yang,et al.  Strong spin–orbit splitting in graphene with adsorbed Au atoms , 2012 .

[84]  T. Jungwirth,et al.  Spin Hall effect devices. , 2012, Nature materials.

[85]  D. Vanderbilt,et al.  Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. , 2008, Physical review letters.

[86]  H. T. Jonkman,et al.  Linear scaling between momentum and spin scattering in graphene , 2009, 0910.1054.

[87]  E. H. Hwang,et al.  Two-dimensional surface charge transport in topological insulators , 2010, 1005.4931.

[88]  J. Fabian,et al.  Electron spin relaxation in graphene: The role of the substrate , 2009, 0905.0424.

[89]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[90]  S. Bandiera,et al.  Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection , 2011, Nature.

[91]  Jun Hu,et al.  Engineering a robust quantum spin Hall state in graphene via adatom deposition , 2011, 1104.3282.

[92]  Joel E Moore,et al.  The birth of topological insulators , 2010, Nature.

[93]  S. Tarucha,et al.  Tuneable electronic properties in graphene , 2011 .

[94]  S. Sikdar,et al.  Fundamentals and applications , 1998 .

[95]  Fengnian Xia,et al.  Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. , 2010, Nano letters.

[96]  A. Shikin,et al.  Is there a rashba effect in graphene on 3d ferromagnets? , 2009, Physical review letters.

[97]  B Andrei Bernevig,et al.  Quantum spin Hall effect. , 2005, Physical review letters.

[98]  Jun Ding,et al.  Quantum anomalous Hall effect in graphene from Rashba and exchange effects , 2010, 1005.1672.

[99]  L. Molenkamp,et al.  Quantum Spin Hall Insulator State in HgTe Quantum Wells , 2007, Science.

[100]  V. M. Edelstein Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems , 1990 .

[101]  S. Kettemann,et al.  Spin relaxation properties in graphene due to its linear dispersion , 2011 .