Novel Polynomial Basis With Fast Fourier Transform and Its Application to Reed–Solomon Erasure Codes

In this paper, we present a fast Fourier transform algorithm over extension binary fields, where the polynomial is represented in a non-standard basis. The proposed Fourier-like transform requires O(h lg(h)) field operations, where h is the number of evaluation points. Based on the proposed Fourier-like algorithm, we then develop the encoding/decoding algorithms for (n = 2m, k) Reed-Solomon erasure codes. The proposed encoding/erasure decoding algorithm requires O(n lg(n)), in both additive and multiplicative complexities. As the complexity leading factor is small, the proposed algorithms are advantageous in practical applications. Finally, the approaches to convert the basis between the monomial basis and the new basis are proposed.

[1]  Michael Luby,et al.  LT codes , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[2]  Michael Luby,et al.  A digital fountain approach to reliable distribution of bulk data , 1998, SIGCOMM '98.

[3]  O. Ore Contributions to the theory of finite fields , 1934 .

[4]  J. Pollard,et al.  The fast Fourier transform in a finite field , 1971 .

[5]  Arnold Schönhage,et al.  Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2 , 1977, Acta Informatica.

[6]  V. Ralph Algazi,et al.  Unified Matrix Treatment of the Fast Walsh-Hadamard Transform , 1976, IEEE Transactions on Computers.

[7]  David G. Cantor,et al.  On arithmetical algorithms over finite fields , 1989, Journal of combinatorial theory. Series A.

[8]  L. Bluestein A linear filtering approach to the computation of discrete Fourier transform , 1970 .

[9]  Dilip V. Sarwate,et al.  Semi-Fast Fourier Transforms over GF(2m). , 1978, IEEE Transactions on Computers.

[10]  David G. Gantor On arithmetical algorithms over finite fields , 1989 .

[11]  Yao Wang,et al.  A fast algorithm for the Fourier transform over finite fields and its VLSI implementation , 1988, IEEE J. Sel. Areas Commun..

[12]  Shuhong Gao,et al.  Additive Fast Fourier Transforms Over Finite Fields , 2010, IEEE Transactions on Information Theory.

[13]  G. Robinson,et al.  Logical convolution and discrete Walsh and Fourier power spectra , 1972 .

[14]  Wei-Ho Chung,et al.  An Efficient $(n,k)$ Information Dispersal Algorithm Based on Fermat Number Transforms , 2013, IEEE Transactions on Information Forensics and Security.

[15]  Jérôme Lacan,et al.  FNT-Based Reed-Solomon Erasure Codes , 2009, 2010 7th IEEE Consumer Communications and Networking Conference.

[16]  F. Moore,et al.  Polynomial Codes Over Certain Finite Fields , 2017 .

[17]  I. S. Reed,et al.  The fast decoding of Reed-Solomon codes using number theoretic transforms , 1976 .

[18]  Robert A. Scholtz,et al.  The fast decoding of Reed-Solomon codes using Fermat theoretic transforms and continued fractions , 1978, IEEE Trans. Inf. Theory.

[19]  J.L. Massey,et al.  Theory and practice of error control codes , 1986, Proceedings of the IEEE.

[20]  Frédéric Didier Efficient erasure decoding of Reed-Solomon codes , 2009, ArXiv.

[21]  Jørn Justesen,et al.  On the complexity of decoding Reed-Solomon codes (Corresp.) , 1976, IEEE Trans. Inf. Theory.

[22]  Ying Wang,et al.  On Algorithms and Complexities of Cyclotomic Fast Fourier Transforms Over Arbitrary Finite Fields , 2012, IEEE Transactions on Signal Processing.

[23]  Robert L. Miller Generalized BCH Codes , 1979, Inf. Control..

[24]  J. E. Gibbs,et al.  Comments on Transformation of "Fourier" Power Spectra Into "Walsh" Power Spectra , 1971 .

[25]  O. Ore On a special class of polynomials , 1933 .

[26]  Yunghsiang Sam Han,et al.  FFT Algorithm for Binary Extension Finite Fields and Its Application to Reed–Solomon Codes , 2015, IEEE Transactions on Information Theory.

[27]  Wei-Ho Chung,et al.  An Efficient (n, k) Information Dispersal Algorithm for High Code Rate System over Fermat Fields , 2012, IEEE Communications Letters.

[28]  Joachim von zur Gathen,et al.  Arithmetic and factorization of polynomials over F_2 , 1996, ISSAC 1996.