Fine asymptotic expansion of the ODE's flow
暂无分享,去创建一个
[1] L. Hervé,et al. A picture of the ODE's flow in the torus: From everywhere or almost-everywhere asymptotics to homogenization of transport equations , 2021, Journal of Differential Equations.
[2] Marc Briane,et al. Specific Properties of the ODE’s Flow in Dimension Two Versus Dimension Three , 2021, Journal of Dynamics and Differential Equations.
[3] Pierre Germain,et al. Stratospheric Planetary Flows from the Perspective of the Euler Equation on a Rotating Sphere , 2021, Archive for Rational Mechanics and Analysis.
[4] Loic Herv'e,et al. Asymptotics of ODE's flow on the torus through a singleton condition and a perturbation result. Applications , 2020, Discrete & Continuous Dynamical Systems.
[5] Marc Briane,et al. Isotropic Realizability of Fields and Reconstruction of Invariant Measures under Positivity Properties. Asymptotics of the Flow by a Non-Ergodic Approach , 2019, SIAM J. Appl. Dyn. Syst..
[6] Roberto Peirone. Homogenization of ODE’s in $${\mathbb {R}}^N$$RN , 2018, Annali di Matematica Pura ed Applicata (1923 -).
[7] Pablo Dávalos. ON ANNULAR MAPS OF THE TORUS AND SUBLINEAR DIFFUSION , 2013, Journal of the Institute of Mathematics of Jussieu.
[8] G. Milton,et al. Which electric fields are realizable in conducting materials , 2013, 1301.1613.
[9] F. Tal,et al. Area-preserving irrotational diffeomorphisms of the torus with sublinear diffusion , 2012, 1206.2409.
[10] Alejandro Kocsard,et al. A mixing-like property and inexistence of invariant foliations for minimal diffeomorphisms of the 2-torus , 2009, 0902.2474.
[11] Roberto Peirone. Convergence of solutions of linear transport equations , 2003, Ergodic Theory and Dynamical Systems.
[12] T. Shepherd,et al. Nonlinear stability of Euler flows in two-dimensional periodic domains , 1999 .
[13] Tamir Tassa,et al. Homogenization of Two-Dimensional Linear Flows with Integral Invariance , 1997, SIAM J. Appl. Math..
[14] M. Misiurewicz,et al. Rotation Sets for Maps of Tori , 1989 .
[15] Alejandro Kocsard. On the dynamics of minimal homeomorphisms of $T^2$ which are not pseudo-rotations , 2021, Annales Scientifiques de l'Ecole Normale Supérieure.
[16] M. Mirzakhani,et al. Introduction to Ergodic theory , 2010 .
[17] Roberto Peirone. A nonhomogenizable linear transport equation in R2 , 2009 .
[18] J. Zukas. Introduction to the Modern Theory of Dynamical Systems , 1998 .
[19] Sergei Petrovich Novikov,et al. On Dynamical Systems with an Integral Invariant on a Torus , 1991 .
[20] François Golse,et al. Moyennisation des champs de vecteurs et ÉDP , 1990 .
[21] M. Misiurewicz,et al. Rotation sets of toral flows , 1990 .
[22] M. R. Herman. Existence et non existence de tores invariants par des difféomorphismes symplectiques , 1988 .
[23] V. Arnold,et al. Sur la topologie des écoulements stationnaires des fluides parfaits , 1965 .
[24] T. Austin,et al. Ergodic Theory , 2022 .
[25] W. Stepanoff. Sur une extension du théorème ergodique , 1936 .