Fine asymptotic expansion of the ODE's flow

[1]  L. Hervé,et al.  A picture of the ODE's flow in the torus: From everywhere or almost-everywhere asymptotics to homogenization of transport equations , 2021, Journal of Differential Equations.

[2]  Marc Briane,et al.  Specific Properties of the ODE’s Flow in Dimension Two Versus Dimension Three , 2021, Journal of Dynamics and Differential Equations.

[3]  Pierre Germain,et al.  Stratospheric Planetary Flows from the Perspective of the Euler Equation on a Rotating Sphere , 2021, Archive for Rational Mechanics and Analysis.

[4]  Loic Herv'e,et al.  Asymptotics of ODE's flow on the torus through a singleton condition and a perturbation result. Applications , 2020, Discrete & Continuous Dynamical Systems.

[5]  Marc Briane,et al.  Isotropic Realizability of Fields and Reconstruction of Invariant Measures under Positivity Properties. Asymptotics of the Flow by a Non-Ergodic Approach , 2019, SIAM J. Appl. Dyn. Syst..

[6]  Roberto Peirone Homogenization of ODE’s in $${\mathbb {R}}^N$$RN , 2018, Annali di Matematica Pura ed Applicata (1923 -).

[7]  Pablo Dávalos ON ANNULAR MAPS OF THE TORUS AND SUBLINEAR DIFFUSION , 2013, Journal of the Institute of Mathematics of Jussieu.

[8]  G. Milton,et al.  Which electric fields are realizable in conducting materials , 2013, 1301.1613.

[9]  F. Tal,et al.  Area-preserving irrotational diffeomorphisms of the torus with sublinear diffusion , 2012, 1206.2409.

[10]  Alejandro Kocsard,et al.  A mixing-like property and inexistence of invariant foliations for minimal diffeomorphisms of the 2-torus , 2009, 0902.2474.

[11]  Roberto Peirone Convergence of solutions of linear transport equations , 2003, Ergodic Theory and Dynamical Systems.

[12]  T. Shepherd,et al.  Nonlinear stability of Euler flows in two-dimensional periodic domains , 1999 .

[13]  Tamir Tassa,et al.  Homogenization of Two-Dimensional Linear Flows with Integral Invariance , 1997, SIAM J. Appl. Math..

[14]  M. Misiurewicz,et al.  Rotation Sets for Maps of Tori , 1989 .

[15]  Alejandro Kocsard On the dynamics of minimal homeomorphisms of $T^2$ which are not pseudo-rotations , 2021, Annales Scientifiques de l'Ecole Normale Supérieure.

[16]  M. Mirzakhani,et al.  Introduction to Ergodic theory , 2010 .

[17]  Roberto Peirone A nonhomogenizable linear transport equation in R2 , 2009 .

[18]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[19]  Sergei Petrovich Novikov,et al.  On Dynamical Systems with an Integral Invariant on a Torus , 1991 .

[20]  François Golse,et al.  Moyennisation des champs de vecteurs et ÉDP , 1990 .

[21]  M. Misiurewicz,et al.  Rotation sets of toral flows , 1990 .

[22]  M. R. Herman Existence et non existence de tores invariants par des difféomorphismes symplectiques , 1988 .

[23]  V. Arnold,et al.  Sur la topologie des écoulements stationnaires des fluides parfaits , 1965 .

[24]  T. Austin,et al.  Ergodic Theory , 2022 .

[25]  W. Stepanoff Sur une extension du théorème ergodique , 1936 .