The cucurbit[n]uril family.
暂无分享,去创建一个
Lyle Isaacs | L. Isaacs | P. Mukhopadhyay | S. Chakrabarti | J. Lagona | Jason Lagona | Pritam Mukhopadhyay | Sriparna Chakrabarti | Sriparna Chakrabarti
[1] V. Fedin,et al. Stabilization of the previously unknown tautomer HP(OH)2 of hypophosphorous acid as ligand; preparation of [W3(Ni(HP(OH)2))Q4(H2O)9]4+ (Q = S, Se) complexes. , 2003, Chemical communications.
[2] Yuqi Feng,et al. Separation of positional isomers by cucurbit[7]uril‐mediated capillary electrophoresis , 2004, Electrophoresis.
[3] R. M. Izatt,et al. A highly selective compound for lead : Complexation studies of decamethylcucurbit[5]uril with metal ions , 2000 .
[4] L. Isaacs,et al. Self-sorting: the exception or the rule? , 2003, Journal of the American Chemical Society.
[5] D. Dybtsev,et al. Unexpected guest-controlled formation of two-layered structure in supramolecular adduct of [W3S4(H2O)9]4+ and cucurbituril , 2000 .
[6] L. Mutihac,et al. The formation of amino acid and dipeptide complexes with α-cyclodextrin and cucurbit[6]uril in aqueous solutions studied by titration calorimetry , 2003 .
[7] H. Buschmann,et al. Abtrennung von Aromaten aus Wasser mit dem supramolekularen regenerierbaren Komplexbildner Cucurbituril , 1998 .
[8] P. Cintas. Cucurbituril: Supramolecular perspectives for an old ligand , 1994 .
[9] D. Samsonenko,et al. Synthesis and the crystal structure of a supramolecular adduct of the [Mo3O4(H2O)6Cl3]+ cluster complex with macrocyclic cavitand cucurbituril , 2001 .
[10] A. P. Shevchenko,et al. Methods of crystallochemical analysis of supramolecular complexes by means of Voronoi-Dirichlet polyhedra: a study of cucurbituril host-guest compounds. , 2004, Acta crystallographica. Section B, Structural science.
[11] Kimoon Kim,et al. Selective Inclusion of a Hetero-Guest Pair in a Molecular Host: Formation of Stable Charge-Transfer Complexes in Cucurbit[8]uril. , 2001, Angewandte Chemie.
[12] N. Pervukhina,et al. Isolation and Structural Characterization of New Indium(III) Aqua Complexes:trans-[InCl2(H2O)4]+ andtrans-[InCl4(H2O)2]− as Supramolecular Adducts with Cucurbituril and Related Studies , 2001 .
[13] J. Collins,et al. Multi-nuclear platinum complexes encapsulated in cucurbit[n]uril as an approach to reduce toxicity in cancer treatment. , 2004, Chemical communications.
[14] W. Nau,et al. Cucurbiturils: molecular nanocapsules for time-resolved fluorescence-based assays , 2004, IEEE Transactions on NanoBioscience.
[15] V. Fedin,et al. Syntheses and crystal structures of supramolecular compounds of tetranuclear ZrIV and HfIV aqua hydroxo complexes with macrocyclic cavitand cucurbituril , 2004 .
[16] R. Behrend,et al. I. Ueber Condensationsproducte aus Glycoluril und Formaldehyd , 1905 .
[17] D. Samsonenko,et al. Synthesis and crystal structure of supramolecular adduct of tetranuclear uranyl chloride aquacomplex with macrocyclic cavitand cucurbituril , 2002 .
[18] J. Anderson,et al. Encapsulation of N(2), O(2), methanol, or acetonitrile by decamethylcucurbit[5]uril(NH(4)(+))(2) complexes in the gas phase: influence of the guest on "lid" tightness. , 2001, Journal of the American Chemical Society.
[19] U. Pischel,et al. Selective fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene by nucleotides. , 2003, Organic letters.
[20] J. Steinke,et al. The synthesis of [2], [3] and [4]rotaxanes and semirotaxanes. , 2002, Chemical communications.
[21] D. Dybtsev,et al. Metal incorporation into and dimerization of M3E4 clusters (M = Mo, W; E = S, Se) in supramolecular assemblies with cucurbituril: A molecular model of intercalation , 2000 .
[22] R. Hernández-Molina,et al. Aqueous solution chemistry of [Mo3CuSe4]n+ (n = 4, 5) and [W3CuQ4]5+ (Q = S, Se) clusters. , 2004, Dalton transactions.
[23] E. Schollmeyer,et al. The formation of cucurbituril complexes with amino acids and amino alcohols in aqueous formic acid studied by calorimetric titrations , 1998 .
[24] E. Nakamura,et al. Synthesis of disubstituted cucurbit[6]uril and its rotaxane derivative. , 2002, Organic letters.
[25] D. Samsonenko,et al. Syntheses and crystal structures of SmIII and ThIV complexes with macrocyclic cavitand cucurbituril , 2003 .
[26] D. Dybtsev,et al. Supramolecular assemblies based on cucurbituril adducts of hydrogen-bonded molybdenum and tungsten incomplete cuboidal aqua complexes. , 2000, Inorganic chemistry.
[27] Kimoon Kim,et al. Columnar one-dimensional coordination polymer formed with a metal ion and a host–guest complex as building blocks: potassium ion complexed cucurbituril , 2000 .
[28] Y. Ko,et al. Unprecedented host-induced intramolecular charge-transfer complex formation. , 2002, Chemical communications.
[29] Surface modification of polymers using supramolecular compounds , 2002 .
[30] Stoddart,et al. Artificial Molecular Machines. , 2000, Angewandte Chemie.
[31] V. Ramamurthy,et al. Templating Photodimerization of trans-Cinnamic Acids with Cucurbit[8]uril and γ-Cyclodextrin , 2005 .
[32] G. Whelan,et al. Molecular recognition of dihydroxyaromatics with bis-o-xylyleneglycoluril hosts , 1996 .
[33] Rjm Roeland Nolte,et al. A molecular clip with allosteric binding properties , 1991 .
[34] T. Wolff,et al. Fluorescence of 1-anilinonaphthalene-8-sulfonate in solid macrocyclic environments , 1999 .
[35] E. Schollmeyer,et al. Complexation of Volatile Organic Molecules from the Gas Phase with Cucurbituril and β-Cyclodextrin , 1998 .
[36] Kimoon Kim,et al. Construction of a Square-wave-shaped One-dimensional Polyrotaxane Using a Preorganized L-shaped Pseudorotaxane , 2002 .
[37] E. Schollmeyer,et al. Cucurbituril as a ligand for the complexation of cations in aqueous solutions , 1992 .
[38] F. Pichierri. Density functional study of cucurbituril and its sulfur analogue , 2004 .
[39] D. Hupe. Pharmaceutical Design and Development. A Molecular Biology Approach Edited by T. V. Ramabhadran (Neurogen Corp.). Ellis Horwood: New Jersey. 1994. viii + 337 pp. ISBN 0-13-553884-X. , 1996 .
[40] D. Dybtsev,et al. Synthesis and the crystal structure of the supramolecular complex [Cl3InW3S4(H2O)9]2+ with cucurbituril , 2001 .
[41] Matthew J. Mio,et al. A field guide to foldamers. , 2001, Chemical reviews.
[42] Y. Miyahara,et al. "Molecular" molecular sieves: lid-free decamethylcucurbit[5]uril absorbs and desorbs gases selectively. , 2002, Angewandte Chemie.
[43] A. Kaifer,et al. Modes of binding interaction between viologen guests and the cucurbit[7]uril host. , 2004, Organic Letters.
[44] Y. Ko,et al. A facile, stereoselective [2 + 2] photoreaction mediated by curcurbit[8]uril. , 2001, Chemical communications.
[45] W. L. Mock,et al. Catalysis by cucurbituril. The significance of bound-substrate destabilization for induced triazole formation , 1989 .
[46] L. Mutihac,et al. A novel experimental method for the study of complex formation between α-, β- and γ-cyclodextrin and nearly insoluble cucurbituril–[2]rotaxanes in aqueous solution , 2000 .
[47] J. Fettinger,et al. Preparation of glycoluril monomers for expanded cucurbit[ n ]uril synthesis , 2003 .
[48] Z. Tao,et al. NMR study on self-assembled cage complex of hexamethylenetetramine and cucurbit[n]urils , 2003 .
[49] Y. Sasaki,et al. Entropy Changes in the Inclusion Complex Formation of α-Cyclodextrin with Alcohols as Studied by the Titration Calorimetry , 1987 .
[50] Self-Assembly of Interlocked Structures: Rotaxanes, Polyrotaxanes and Molecular Necklaces , 1999 .
[51] E. Schollmeyer,et al. THE COMPLEX FORMATION OF ALPHA , OMEGA -DICARBOXYLIC ACIDS AND ALPHA , OMEGA -DIOLS WITH CUCURBITURIL AND ALPHA -CYCLODEXTRIN. THE FIRST STEP TO THE F ORMATION OF ROTAXANES AND POLYROTAXANES OF THE POLYESTER TYPE , 1999 .
[52] D. Samsonenko,et al. Synthesis and crystal structure of the nanosized supramolecular SmIII complex with macrocyclic cavitand cucurbituril {[Sm(H2O)4]2(C36H36N24O12)3}Br6·44H2O , 2002 .
[53] Kimoon Kim,et al. Macrocycles within Macrocycles: Cyclen, Cyclam, and Their Transition Metal Complexes Encapsulated in Cucurbit[8]uril. , 2001, Angewandte Chemie.
[54] Kimoon Kim,et al. Control of the stoichiometry in host-guest complexation by redox chemistry of guests: inclusion of methylviologen in cucurbit[8]uril. , 2002, Chemical communications.
[55] Xuyang He,et al. A new cucurbituril-based metallo-rotaxane , 2002 .
[56] Kimoon Kim,et al. Transition metal ion directed supramolecular assembly of one- and two-dimensional polyrotaxanes incorporating cucurbituril. , 2002, Chemistry.
[57] F. Pichierri. Nanosoldering of thia-cucurbituril macrocycles with transition metals affords novel tubular nanostructures: A computational study , 2005 .
[58] Kimoon Kim,et al. Facile synthesis of cucurbit[n]uril derivatives via direct functionalization: expanding utilization of cucurbit[n]uril. , 2003, Journal of the American Chemical Society.
[59] W. L. Mock,et al. Structure and selectivity in host―guest complexes of cucurbituril , 1986 .
[60] E. Schollmeyer,et al. Cucurbituril and β-Cyclodextrin as Hosts for the Complexation of Organic Dyes , 1997 .
[61] D. Samsonenko,et al. Synthesis and Structure of the Supramolecular Adduct Formed by the [Mo3S4(H2O)7Cl22+ Cluster Complex with Cucurbituril: {[Mo3S4(H2O)7Cl2](C36H36N24O12)} Cl2·10H2O , 2004 .
[62] G. Wulff,et al. Enzyme-like catalysis by molecularly imprinted polymers. , 2002, Chemical reviews.
[63] P. Ashton,et al. Molecular Necklace: Quantitative Self-Assembly of a Cyclic Oligorotaxane from Nine Molecules , 1998 .
[64] Y. Ko,et al. Growth of poly(pseudorotaxane) on gold using host-stabilized charge-transfer interaction. , 2004, Chemical communications.
[65] M. Wörle,et al. Supramolecular Assemblies Based on Cucurbituril Adducts of Hydrogen-Bonded Cubane-Type Molybdenum−Nickel Sulfide Aqua Complexes , 2001 .
[66] J. Park,et al. A Molecular Bowl with Metal Ion as Bottom: Reversible Inclusion of Organic Molecules in Cesium Ion Complexed Cucurbituril , 1998 .
[67] Jae Wook Lee,et al. Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. , 2003, Accounts of chemical research.
[68] J. Steinke,et al. Catalytic Self-Threading: A New Route for the Synthesis of Polyrotaxanes , 2004 .
[69] K. Geckeler,et al. Solvent-free self-assembly of C60 and cucurbit[7]uril using high-speed vibration milling , 2004 .
[70] D. Dybtsev,et al. Phosphorous acid and arsenious acid as ligands. , 2001, Inorganic chemistry.
[71] Young Ho Ko,et al. Novel molecular drug carrier: encapsulation of oxaliplatin in cucurbit[7]uril and its effects on stability and reactivity of the drug. , 2005, Organic & biomolecular chemistry.
[72] W. Nau,et al. Polarizabilities Inside Molecular Containers This work was supported by the Swiss National Science Foundation (projects 620-58000.99 and 4047-057552) within the program NFP 47 "Supramolecular Functional Materials". , 2001, Angewandte Chemie.
[73] J. F. Stoddart,et al. Oligocatenanes Made to Order1 , 1998 .
[74] W. Nau,et al. Mechanism of host-guest complexation by cucurbituril. , 2004, Journal of the American Chemical Society.
[75] Kimoon Kim,et al. Ternary Complexes Between DNA, Polyamine, and Cucurbituril: A Modular Approach to DNA-Binding Molecules. , 2000, Angewandte Chemie.
[76] A. Kaifer,et al. Molecular encapsulation by cucurbit[7]uril of the apical 4,4'-bipyridinium residue in newkome-type dendrimers. , 2003, Angewandte Chemie.
[77] Kimoon Kim,et al. A pseudorotaxane on gold: formation of self-assembled monolayers, reversible dethreading and rethreading of the ring, and ion-gating behavior. , 2003, Angewandte Chemie.
[78] Kimoon Kim,et al. Helical polyrotaxane: cucurbituril ‘beads’ threaded onto a helical one-dimensional coordination polymer , 1997 .
[79] J. Steinke,et al. Mainchain pseudopolyrotaxanes viapost-threading with cucurbituril , 2001 .
[80] Eunsung Lee,et al. A Three‐Dimensional Polyrotaxane Network , 2000 .
[81] D. Samsonenko,et al. Crystal Structure of the Ca2+ Supramolecular Complex with Cucurbituryl {[Ca(H2O)3(HSO4)(CH3OH)]2(C36N24O12H36)}(HSO4)2 · 4H2O , 2001 .
[82] D. Samsonenko,et al. Crystal Structure of a Supramolecular Adduct of Tetrachloroferrate(III) with Cucurbituryl (H7O3)4[FeCl4]2Cl2⋅C36H36N24O12⋅3H2O , 2001 .
[83] A. Wego,et al. Glycoluril derivatives as precursors in the preparation of substituted cucurbit[n]urils , 2003 .
[84] J. Szejtli. Introduction and General Overview of Cyclodextrin Chemistry. , 1998, Chemical reviews.
[85] J. Fraser Stoddart,et al. Künstliche molekulare Maschinen , 2000 .
[86] Y. Ko,et al. Novel [2]Pseudorotaxanes Containing Cucurbituril as a Molecular Bead: Unexpected Formation of a Kinetic Product Which Spontaneously Converts into a Thermodynamic Product by Translocation of the Bead , 2002 .
[87] Kimoon Kim,et al. Shape-Induced, Hexagonal, Open Frameworks: Rubidium Ion Complexed Cucurbituril. , 1999, Angewandte Chemie.
[88] Charles J. Pedersen,et al. The Discovery of Crown Ethers (Noble Lecture) , 1988 .
[89] R. Nolte,et al. Self-assembled Architectures from Glycoluril , 2000 .
[90] Y. Ko,et al. Novel Pseudorotaxane-Terminated Dendrimers: Supramolecular Modification of Dendrimer Periphery We gratefully acknowledge the Korean Ministry of Science and Technology (Creative Research Initiative Program) for support of this work, and Professor P. K. Bharadwaj for reading the manuscript. , 2001, Angewandte Chemie.
[91] Kimoon Kim,et al. Molecular Container Assembly Capable of Controlling Binding and Release of Its Guest Molecules: Reversible Encapsulation of Organic Molecules in Sodium Ion Complexed Cucurbituril , 1996 .
[92] A. Wego,et al. Synthesis of Cucurbituril-spermine-[2]rotaxanes of the Amide-type , 2000 .
[93] W. Nau,et al. Ultrastable rhodamine with cucurbituril. , 2005, Angewandte Chemie.
[94] P. Germain,et al. Thermal behaviour of hydrated and anhydrous Cucurbituril: A DSC, T.G. and calorimetric study in temperature range from 100 to 800 K , 1998 .
[95] B. Wagner,et al. A fluorescent host-guest complex of cucurbituril in solution: a molecular Jack O'Lantern , 2001 .
[96] E. Schollmeyer,et al. Synthesis of mono-, oligo- and polyamide-cucurbituril rotaxanes† , 1998 .
[97] Charles J. Pedersen,et al. Die Entdeckung der Kronenether (Nobel‐Vortrag) , 1988 .
[98] Y. Ko,et al. NMR Investigation of the complexation of neutral guests by cucurbituril , 2001 .
[99] Jean-Marie Lehn,et al. Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture) , 1988 .
[100] David J. Williams,et al. Decamethylcucurbit[5]uril† , 1992 .
[101] W. L. Mock,et al. Host-guest binding capacity of cucurbituril , 1983 .
[102] J. Lehn,et al. Supramolekulare Chemie – Moleküle, Übermoleküle und molekulare Funktionseinheiten (Nobel-Vortrag)† , 1988 .
[103] D. Samsonenko,et al. Inclusion of Two PhP(O)(OH)2 Guest Molecules into the Cavity of Macrocyclic Cavidand Cucurbit[8]uril , 2004 .
[104] Y. Ko,et al. Pseudopolyrotaxanes Made to Order: Cucurbituril Threaded on Polyviologen , 2002 .
[105] W. Knoche,et al. Host–guest complexes of cucurbituril with 4-amino-4′-nitroazobenzene and 4,4′-diaminoazobenzene in acidic aqueous solutions , 1998 .
[106] Werner M. Nau,et al. Polarisierbarkeiten im Inneren von molekularen Containern , 2001 .
[107] KimKimoon,et al. A Simple Construction of a Rotaxane and Pseudorotaxane : Syntheses and X-Ray Crystal Structures of Cucurbituril Threaded on Substituted Spermine , 1996 .
[108] I. Dance,et al. A cucurbituril-based gyroscane: a new supramolecular form. , 2002, Angewandte Chemie.
[109] M. Zanetti,et al. Thermal Degradation of Cyclodextrins , 2000 .
[110] J. Steinke,et al. Catalytically self-threading polyrotaxanes , 1999 .
[111] Jae Wook Lee,et al. A [2]pseudorotaxane-based molecular machine: reversible formation of a molecular loop driven by electrochemical and photochemical stimuli. , 2003, Angewandte Chemie.
[112] Eunju Kim,et al. Molecular loop lock: a redox-driven molecular machine based on a host-stabilized charge-transfer complex. , 2004, Angewandte Chemie.
[113] Xiaojun Wu,et al. Construction of Pseudorotaxanes and Rotaxanes Based on Cucurbit[n]uril , 2004 .
[114] V. Fedin,et al. Coordination of Bimuth(III) to Cucurbit[8]uril. Preparation and X‐ray Structure of [{Bi(NO3)(H2O)5}2(Q8)][Bi(NO3)3(H2O)4]2[Bi(NO3)5]2·Q8·19H2O , 2003 .
[115] J. Atwood,et al. Encyclopedia of supramolecular chemistry , 2004 .
[116] Kimoon Kim,et al. Supramolecular modulation of action of polyamine on enzyme/DNA interactions. , 2005, Chemical communications.
[117] D. Samsonenko,et al. Synthesis and Crystal Structure of Supramolecular Adducts of Macrocyclic Cavitand Cucurbituril with Chromium(III) and Nickel(II) Aqua Complexes , 2003 .
[118] Kwang S. Kim,et al. Structural stabilities and self-assembly of Cucurbit[n]uril (n=4-7) and decamethylcucurbit[n]uril (n=4-6): A theoretical study , 2001 .
[119] Yebang Tan,et al. Synthesis and Characterization of Novel Side-Chain Pseudopolyrotaxanes Containing Cucurbituril , 2002 .
[120] Alan E. Rowan,et al. Molecular and Supramolecular Objects from Glycoluril , 1999 .
[121] D. Dybtsev,et al. A supramolecular approach to the crystallization of chalcogenido bridged cluster aqua ions: synthesis and structure of a cucurbituril adduct of the di-μ-disulfido Nb(IV)2 aqua ion [Nb2(μ-S2)2(H2O)8]4+ , 2000 .
[122] Haiyan Fu,et al. Investigation of Host–Guest Compounds of Cucurbit[n=5–8]uril with Some Ortho Aminopyridines and Bispyridine , 2005 .
[123] A. Rockwood,et al. Isotopic compositions and accurate masses of single isotopic peaks , 2003, Journal of the American Society for Mass Spectrometry.
[124] Y. Lim,et al. Self-assembled ternary complex of cationic dendrimer, cucurbituril, and DNA: noncovalent strategy in developing a gene delivery carrier. , 2002, Bioconjugate chemistry.
[125] Mao‐Lin Hu,et al. Synthesis of a symmetrical tetrasubstituted cucurbit[6]uril and its host-guest inclusion complex with 2,2 ′-bipyridine , 2004 .
[126] J. Ziller,et al. Dinitrogen reduction by TmII, DyII, and NdII with simple amide and aryloxide ligands. , 2003, Journal of the American Chemical Society.
[127] Y. Ko,et al. A stable cis-stilbene derivative encapsulated in cucurbit[7]uril. , 2003, Chemical communications.
[128] W. L. Mock,et al. A cucurbituril-based molecular switch , 1990 .
[129] Y. Miyahara,et al. Remarkably facile ring-size control in macrocyclization: synthesis of hemicucurbit[6]uril and hemicucurbit[12]uril. , 2004, Angewandte Chemie.
[130] Kimoon Kim,et al. Self-Assembly of Interlocked Structures and Open Framework Materials using Coordination Bonds , 2000 .
[131] D. Samsonenko,et al. Supramolecular chemistry of cucurbiturils , 2003 .
[132] W. DeGrado,et al. beta-Peptides: from structure to function. , 2001, Chemical reviews.
[133] Jungseok Heo,et al. Forminduzierte, offene, hexagonale Gerüste: von Rubidiumionen komplexiertes Cucurbituril , 1999 .
[134] B. Wagner,et al. Fluorescence Enhancement of Curcumin upon Inclusion into Cucurbituril , 2004 .
[135] M. Jekel,et al. Removal of Reactive Dyes by Sorption/Complexation with Cucurbituril , 1999 .
[136] A. Day,et al. The Effects of Alkali Metal Cations on Product Distributions in Cucurbit[n]uril Synthesis , 2002 .
[137] Donald J. Cram. The Design of Molecular Hosts, Guests, and Their Complexes (Nobel Lecture)† , 1988 .
[138] B. Honig,et al. Classical electrostatics in biology and chemistry. , 1995, Science.
[139] Yi-zhi Li,et al. Iodine-assisted assembly of helical coordination polymers of cucurbituril and asymmetric copper(II) complexes. , 2005, Angewandte Chemie.
[140] J. Fettinger,et al. Cucurbit[n]uril analogues. , 2003, Organic letters.
[141] J. Fettinger,et al. Designed self-assembly of molecular necklaces using host-stabilized charge-transfer interactions. , 2004, Journal of the American Chemical Society.
[142] Eunsung Lee,et al. New Cucurbituril Homologues: Syntheses, Isolation, Characterization, and X-ray Crystal Structures of Cucurbit[n]uril (n = 5, 7, and 8) , 2000 .
[143] E. Schollmeyer,et al. Cucurbituril as host molecule for the complexation of aliphatic alcohols, acids and nitriles in aqueous solution , 2000 .
[144] J. W. Smeets,et al. Novel Concave Building Block for the Synthesis of Organic Hosts , 1987 .
[145] P. K. Bharadwaj,et al. Supramolecular amphiphiles: spontaneous formation of vesicles triggered by formation of a charge-transfer complex in a host. , 2002, Angewandte Chemie.
[146] Y. Ko,et al. Inclusion of methylviologen in cucurbit[7]uril , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[147] E. Schollmeyer,et al. Thermodynamic Data for Complex Formation Between Cucurbituril and Alkali and Alkaline Earth Cations in Aqueous Formic Acid Solution , 1998 .
[148] A. Kaifer,et al. Unusual Electrochemical Properties of the Inclusion Complexes of Ferrocenium and Cobaltocenium with Cucurbit[7]uril , 2003 .
[149] M. Jekel,et al. Cucurbituril for water treatment. Part II: Ozonation and oxidative regeneration of cucurbituril. , 2001, Water research.
[150] Kimoon Kim,et al. A Double-chained Polyrotaxane: Cucurbituril 'Beads' Threaded onto a Double-chained One-dimensional Coordination Polymer , 2004 .
[151] G. Lamprecht,et al. Preparation, structure, and properties of the corner-shared double cubes [Mo(6)HgQ(8)(H(2)O)(18)](8+) (Q = S, Se) and tungsten analogues. , 2001, Inorganic chemistry.
[152] Kimoon Kim,et al. Designed self-assembly of molecular necklaces. , 2002, Journal of the American Chemical Society.
[153] K. Sharpless,et al. Click-Chemie: diverse chemische Funktionalität mit einer Handvoll guter Reaktionen , 2001 .
[154] Kimoon Kim. Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. , 2002, Chemical Society reviews.
[155] T. White,et al. Cucurbit[7]uril ando-Carborane Self-Assemble to Form a Molecular Ball Bearing , 2002 .
[156] W. Nau,et al. Two Mechanisms of Slow Host-Guest Complexation between Cucurbit[6]uril and Cyclohexylmethylamine: pH-Responsive Supramolecular Kinetics. , 2001, Angewandte Chemie.
[157] R. Mutihac,et al. Complexation behavior of cucurbit[6]uril with short polypeptides , 2005 .
[158] J. Fettinger,et al. Methylene-bridged glycoluril dimers: synthetic methods. , 2002, The Journal of organic chemistry.
[159] M. Jekel,et al. Cucurbituril for water treatment. Part I: Solubility of cucurbituril and sorption of reactive dyes. , 2001, Water research.
[160] David R Walt,et al. Fluorescence-based fibre optic arrays: a universal platform for sensing. , 2003, Chemical Society reviews.
[161] Eric V Anslyn,et al. Sensing A Paradigm Shift in the Field of Molecular Recognition: From Selective to Differential Receptors. , 2001, Angewandte Chemie.
[162] M. Finn,et al. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001 .
[163] S. Ng,,et al. A hydrated co-crystal of bis(μ-oxo-κ2O:O)bis[aquaoxodichloromolybdenum(VI)] with cucurbit[6]uril , 2005 .
[164] E. Schollmeyer,et al. Determination of complex stabilities with nearly insoluble host molecules: cucurbit[5]uril, decamethylcucurbit[5]uril and cucurbit[6]uril as ligands for the complexation of some multicharged cations in aqueous solution , 2001 .
[165] G. Cheng,et al. The formation of cucurbit[n]uril (n = 6, 7) complexes with amino compounds in aqueous formic acid studied by capillary electrophoresis , 2005, Electrophoresis.
[166] C. Martin,et al. pH-switchable, ion-permselective gold nanotubule membrane based on chemisorbed cysteine. , 2001, Analytical chemistry.
[167] E. Keinan,et al. Facile purification of rare cucurbiturils by affinity chromatography. , 2004, Organic letters.
[168] W. A. Freeman. Structures of the p-xylylenediammonium chloride and calcium hydrogensulfate adducts of the cavitand 'cucurbituril', C36H36N24O12 , 1984 .
[169] E. Schollmeyer,et al. Complexes of cucurbituril with alkyl mono- and diammonium ions in aqueous formic acid studied by calorimetric titrations , 1997 .
[170] H. Bayley,et al. Carriers versus adapters in stochastic sensing. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.
[171] A. Wego,et al. Synthesis of Cucurbit[5]uril-Spermine-[2]Rotaxanes , 2002 .
[172] A. Wego,et al. The determination of complex stabilities between different cyclodextrins and dibenzo-18-crown-6, cucurbit[6]uril, decamethylcucurbit[5]uril, cucurbit[5]uril, p-tert-butylcalix[4]arene and p-tert-butylcalix[6]arene in aqueous solutions using a spectrophotometric method , 2001 .
[173] H. Buschmann,et al. DIE ENTFARBUNG VON TEXTILEM ABWASSER DURCH BILDUNG VON FARBSTOFFEINSCHLUSSVERBINDUNGEN. TEIL 8. KOMPLEXIERUNG VON FARBSTOFFEN MIT CUCURBITURIL UND DER EINFLUSS VON SALZEN UND TENSIDEN , 1998 .
[174] T. Takata,et al. Efficient Syntheses of Interlocked Molecules Based on Hydrogen-Bonding : Recent Progress in Syntheses of Rotaxanes and Catenaries , 2001 .
[175] D. Dybtsev,et al. Supramolecular compounds of cucurbituril with molybdenum and tungsten chalcogenide cluster aqua complexes , 2003 .
[176] Hyung-Kun Lee,et al. Vesicle formed by amphiphilc cucurbit[6]uril: versatile, noncovalent modification of the vesicle surface, and multivalent binding of sugar-decorated vesicles to lectin. , 2005, Journal of the American Chemical Society.
[177] D. Rudkevich. Emerging supramolecular chemistry of gases. , 2004, Angewandte Chemie.
[178] F. Raymo,et al. Tight inclusion complexation of 2,7-dimethyldiazapyrenium in cucurbit[7]uril , 2005 .
[179] W. Nau,et al. Refractive index effects on the oscillator strength and radiative decay rate of 2,3-diazabicyclo[2.2.2]oct-2-ene , 2004, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.
[180] Winston Ong,et al. Salt effects on the apparent stability of the cucurbit[7]uril-methyl viologen inclusion complex. , 2004, The Journal of organic chemistry.
[181] D. Koh,et al. Artificial ion channel formed by cucurbit[n]uril derivatives with a carbonyl group fringed portal reminiscent of the selectivity filter of K+ channels. , 2004, Journal of the American Chemical Society.
[182] Donald J. Cram,et al. Von molekularen Wirten und Gästen sowie ihren Komplexen: Nobel-Vortrag , 1988 .
[183] A. Wego,et al. Complex Formation between Cucurbit[n]urils and Alkali, Alkaline Earth and Ammonium Ions in Aqueous Solution , 2001 .
[184] M. Jekel,et al. Effects of alkali and alkaline-earth cations on the removal of reactive dyes with cucurbituril , 1999 .
[185] A. Kaifer,et al. Cucurbit[8]uril-mediated redox-controlled self-assembly of viologen-containing dendrimers. , 2004, Angewandte Chemie.
[186] Kentaro Yamaguchi,et al. Rotaxane-based molecular switch with fluorescence signaling , 2000 .
[187] L. Isaacs,et al. A cucurbit[6]uril analogue: host properties monitored by fluorescence spectroscopy. , 2005, The journal of physical chemistry. B.
[188] Y. Inoue,et al. Complexation Thermodynamics of Cyclodextrins. , 1998, Chemical reviews.
[189] N. Pervukhina,et al. Coordination of Phenylsulfinate PhSO2— to Mo3MS44+ Clusters (M = Ni, Pd) , 2002 .
[190] W. L. Mock,et al. Dynamics of molecular recognition involving cucurbituril , 1989 .
[191] T Robinson,et al. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. , 2001, Bioresource technology.
[192] E. Schollmeyer,et al. Polyrotaxanes and pseudopolyrotaxanes of polyamides and cucurbituril , 1999 .
[193] K. N. Houk,et al. Bindungsaffinitäten von Wirt‐Gast‐, Protein‐Ligand‐ und Protein‐Übergangszustands‐Komplexen , 2003 .
[194] Eckhard Schollmeyer,et al. Cucurbituril and α- and β-Cyclodextrins as Ligands for the Complexation of Nonionic Surfactants and Polyethyleneglycols in Aqueous Solutions , 2000 .
[195] Kimoon Kim,et al. A Two-Dimensional Polyrotaxane with Large Cavities and Channels: A Novel Approach to Metal-Organic Open-Frameworks by Using Supramolecular Building Blocks. , 2001, Angewandte Chemie.
[196] A. Day,et al. A Method for Synthesizing Partially Substituted Cucurbit[n]uril , 2003, Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry.
[197] Complexation of Some Amine Compounds by Macrocyclic Receptors , 2001 .
[198] E. Schollmeyer,et al. Steric factors influencing the complex formation with cucurbit[6]uril , 2002 .
[199] D. Dybtsev,et al. Supramolecular Chemistry Based on [W3S4(H2O)6Cl3]+ − A Versatile Building Block , 2004 .
[200] J. Steinke,et al. Formation of oligotriazoles catalysed by cucurbituril. , 2002, Chemical communications.
[201] V. Fedin,et al. Mono- and polynuclear aqua complexes and cucurbit[6]uril: Versatile building blocks for supramolecular chemistry , 2004 .
[202] Kimoon Kim,et al. Polycatenated Two-Dimensional Polyrotaxane Net , 1997 .
[203] V. Fedin,et al. Inclusion of nickel(II) and copper(II) complexes with aliphatic polyamines in cucurbit[8]uril , 2004 .
[204] D. Samsonenko,et al. Distortion of the Cucurbituril Molecule by an Included 4‐Methylpyridinum Cation , 2002 .
[205] W. L. Mock,et al. Organic ligand-receptor interactions between cucurbituril and alkylammonium ions , 1988 .
[206] N. Kuratieva,et al. Synthesis and crystal structure of unprecedented oxo/hydroxo-bridged polynuclear gallium(III) aqua complexes. , 2005, Inorganic chemistry.
[207] E. Schollmeyer,et al. Hemicucurbit[6]uril, a selective ligand for the complexation of anions in aqueous solution , 2005 .
[208] D. Levy,et al. Energy Transfer in Bichromophoric Molecules: The Effect of Symmetry and Donor/Acceptor Energy Gap , 1999 .
[209] Y. Ko,et al. NMR study of the reversible complexation of xenon by cucurbituril , 2001 .
[210] Dmitry M. Rudkevich. Supramolekulare Chemie von Gasen , 2004 .
[211] L. Isaacs,et al. Social self-sorting in aqueous solution. , 2004, The Journal of organic chemistry.
[212] Yuqi Feng,et al. Preparation and characterization of perhydroxyl-cucurbit[6]uril bonded silica stationary phase for hydrophilic-interaction chromatography. , 2004, Talanta.
[213] K. Geckeler,et al. Nanoencapsulation of [60]Fullerene with the Cavitand Cucurbit[7]uril , 2004 .
[214] E. Schollmeyer,et al. Stabilization of dyes against hydrolytic decomposition by the formation of inclusion compounds , 1992 .
[215] T. Zhu,et al. Interaction of host-guest complexes of cucurbit[n]urils with double probe guests , 2004 .
[216] D. Dybtsev,et al. Synthesis and crystal structures of supramolecular adducts of molybdenum and tungsten selenide aqua complexes with macrocyclic cavitand cucurbituril , 2002 .
[217] R. E. Terry,et al. Calorimetric titration study of the interaction of several uni- and bivalent cations with 15-crown-5, 18-crown-6, and two isomers of dicyclohexo-18-crown-6 in aqueous solution at 25.degree.C and .mu. = 0.1 , 1976 .
[218] Masato Tanaka,et al. Rhodium-Catalyzed Hydrophosphorylation of Terminal Alkynes Leading to Highly Selective Formation of (E)-Alkenylphosphonates: Complete Reversal of Regioselectivity to the Palladium-Catalyzed Counterpart , 2001 .
[219] J. Fettinger,et al. Diastereoselective formation of glycoluril dimers: isomerization mechanism and implications for cucurbit[n]uril synthesis. , 2002, Journal of the American Chemical Society.
[220] D. Dearden,et al. Cucurbit[6]uril pseudorotaxanes: distinctive gas-phase dissociation and reactivity. , 2003, Journal of the American Chemical Society.
[221] D. Dybtsev,et al. Synthesis and crystal structure of a supramolecular adduct of the cubane cluster [CIPdMo3Se4(H2O)7Cl2]+ with macrocyclic cavitand cucurbituril , 2000 .
[222] D. Samsonenko,et al. Synthesis and crystal structures of sumpramolecular compounds of cucurbit[n]urils (n = 6, 8) with polynuclear strontium aqua complexes , 2003 .
[223] Kimoon Kim,et al. Self-assembly of a polyrotaxane containing a cyclic ''bead'' in every structural unit in the solid state: Cucurbituril molecules threaded on a one-dimensional coordination polymer , 1996 .
[224] Andrew G. Leach,et al. Binding affinities of host-guest, protein-ligand, and protein-transition-state complexes. , 2003, Angewandte Chemie.
[225] Kimoon Kim,et al. Cucurbit[n]uril Derivatives Soluble in Water and Organic Solvents. , 2001, Angewandte Chemie.
[226] D. Samsonenko,et al. Supramolecular adduct of tetrachlorogallate with cucurbituril: (H7O3)4[GaCl4]2Cl2·C36H36N24O12·2H2O , 2001 .
[227] W. Knoche,et al. Host–guest complexes of cucurbituril with the 4-methylbenzylammonium lon, alkali-metal cations and NH4+ , 1994 .
[228] V. Fedin,et al. Synthesis and Crystal Structure of (H)2[Y(H2O)8]2(NO3)8(C36H36N24O12)⋅13H2O , 2004 .
[229] A. Kaifer,et al. Cucurbit[7]uril: a very effective host for viologens and their cation radicals. , 2002, Organic letters.
[230] Jungseok Heo,et al. Eine molekulare Schüssel mit einem Metallion als Boden: reversibler Einschluß organischer Moleküle in Cs+‐komplexiertes Cucurbituril , 1998 .
[231] A. Kaifer,et al. Binding selectivity of cucurbit[7]uril: bis(pyridinium)-1,4-xylylene versus 4,4'-bipyridinium guest sites. , 2004, Organic letters.
[232] W. L. Mock,et al. Cycloaddition induced by cucurbituril. A case of Pauling principle catalysis , 1983 .
[233] H. Holdt,et al. Cucurbit[5]uril, Decamethylcucurbit[5]uril and Cucurbit[6]uril. Synthesis, Solubility and Amine Complex Formation , 2001 .
[234] D. Dybtsev,et al. Supramolecular assemblies of [Mo3Se4Clx(H2O)9−x](4−x)+ with cucurbituril; complementarity control through the variation of x , 2002 .
[235] John J. Lavigne,et al. Aufspüren eines Paradigmenwechsels auf dem Gebiet der molekularen Erkennung: von den selektiven Rezeptoren zu den differenziellen Rezeptoren , 2001 .
[236] E. Schollmeyer,et al. Cucurbit[6]uril as ligand for the complexation of lanthanide cations in aqueous solution , 2003 .
[237] Barry B Snushall,et al. Controlling factors in the synthesis of cucurbituril and its homologues. , 2001, The Journal of organic chemistry.
[238] D. Samsonenko,et al. Cucurbituril as a New Macrocyclic Ligand for Complexation of Lanthanide Cations in Aqueous Solutions , 2002 .
[239] Y. Ko,et al. Stable pi-dimer of a tetrathiafulvalene cation radical encapsulated in the cavity of cucurbit[8]uril. , 2004, Chemical communications.
[240] Kimoon Kim,et al. Synthese einer fünfgliedrigen molekularen „Perlenkette”︁ nach einem 2 + 2‐Konzept , 1999 .
[241] Werner M. Nau,et al. Zwei Mechanismen für die langsame Wirt-Gast-Komplexierung zwischen Cucurbit[6]uril und Cyclohexylmethylamin: pH-abhängige supramolekulare Kinetik , 2001 .