Multivariate Volatility Modeling of Electricity Futures

The deregulation of European electricity markets has led to an increasing need in understanding the volatility and correlation structure of electricity prices. We model a multivariate futures series of the European Energy Exchange (EEX) index, using an asymmetric GARCH model for volatilities and augmented dynamic conditional correlation (DCC) models for correlations. In particular, we allow for smooth changes in the unconditional volatilities and correlations through a multiplicative component that we estimate non-parametrically. We also introduce exogenous variables in our new multiplicative DCC model to account for congestion in short-term conditional volatilities. We find different correlation dynamics for long and short-term contracts and the new model achieves higher forecasting performance compared to a standard DCC model.

[1]  Salmai Qari,et al.  The Law of Attraction Bilateral Search and Horizontal Heterogeneity , 2011 .

[2]  Dietmar Fehr,et al.  Exclusion in the All-Pay Auction: An Experimental Investigation , 2010 .

[3]  Matteo M. Pelagatti,et al.  Long‐run relations in European electricity prices , 2010 .

[4]  Ru Xie Human Capital Formation on Skill-Specific Labor Markets , 2011 .

[5]  Joanna Janczura,et al.  An empirical comparison of alternate regime-switching models or electricity spot prices , 2010 .

[6]  W. Härdle,et al.  Mean Volatility Regressions , 2011 .

[7]  P. Franses,et al.  A Generalized Dynamic Conditional Correlation Model: Simulation and Application to Many Assets , 2009 .

[8]  Markus Reiß,et al.  Asymptotic equivalence and sufficiency for volatility estimation under microstructure noise , 2010, 1001.3006.

[9]  M. Jünger,et al.  50 Years of Integer Programming 1958-2008 - From the Early Years to the State-of-the-Art , 2010 .

[10]  M. Burda,et al.  What Explains the German Labor Market Miracle in the Great Recession? , 2011, SSRN Electronic Journal.

[11]  Nikolaus Hautsch,et al.  The Merit of High-Frequency Data in Portfolio Allocation , 2011 .

[12]  M. Gilli,et al.  Bargaining and Collusion in a Regulatory Model , 2011 .

[13]  U. Horst,et al.  Optimal Display of Iceberg Orders , 2011 .

[14]  W. Pohlmeier,et al.  High frequency financial econometrics : recent developments , 2007 .

[15]  Wenjuan Chen On the Continuation of the Great Moderation: New evidence from G7 Countries , 2011 .

[16]  Alexander Meyer-Gohde Monetary Policy, Determinacy, and the Natural Rate Hypothesis , 2011 .

[17]  Dieter Nautz,et al.  Short‐Term Herding of Institutional Traders: New Evidence from the German Stock Market , 2013 .

[18]  Denis Pelletier,et al.  Regime Switching for Dynamic Correlations , 2006 .

[19]  Yuichi Mori,et al.  How Computational Statistics Became the Backbone of Modern Data Science , 2011 .

[20]  R. Herrera,et al.  Extreme value models in a conditional duration intensity framework , 2011 .

[21]  H. Geman Commodities and Commodity Derivatives: Modelling and Pricing for Agriculturals, Metals and Energy , 2005 .

[22]  C. Scarpa,et al.  The regulation of interdependent markets , 2011 .

[23]  Anthony R'eveillac,et al.  CRRA utility maximization under risk constraints , 2011, 1106.1702.

[24]  U. Bindseil The economics of TARGET2 balances , 2011 .

[25]  D. Pilipović,et al.  Energy Risk: Valuing and Managing Energy Derivatives , 1997 .

[26]  Markus Reiß,et al.  Estimation of the characteristics of a Lévy process observed at arbitrary frequency , 2010 .

[27]  Roy van der Weide,et al.  GO-GARCH: a multivariate generalized orthogonal GARCH model , 2002 .

[28]  P. Imkeller,et al.  Forward-backward systems for expected utility maximization , 2011, 1110.2713.

[29]  Luc Bauwens,et al.  A Component GARCH Model With Time Varying Weights , 2006 .

[30]  Wolfgang Karl Härdle,et al.  Bayesian Networks and Sex-Related Homicides , 2011 .

[31]  Cyriel de Jong,et al.  Cointegration between gas and power spot prices , 2009 .

[32]  Alexander Meyer-Gohde Sticky Information and Determinacy , 2011 .

[33]  Juliane Scheffel How Do Unusual Working Schedules Affect Social Life? , 2011 .

[34]  Ruihong Huang,et al.  Limit Order Flow, Market Impact and Optimal Order Sizes: Evidence from NASDAQ TotalView-ITCH Data , 2011 .

[35]  News-driven Business Cycles in SVARs , 2011 .

[36]  Christopher R. Knittel,et al.  An empirical examination of restructured electricity prices , 2005 .

[37]  Christian Hafner,et al.  Efficient Estimation of a Multivariate Multiplicative Volatility Model , 2009 .

[38]  R. Engle,et al.  The Factor-Spline-GARCH Model for High- and Low-Frequency Correlations , 2011 .

[39]  T. Bollerslev,et al.  Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model , 1990 .

[40]  A. Werwatz,et al.  An Indicator for National Systems of Innovation: Methodology and Application to 17 Industrialized Countries , 2011 .

[41]  Juliane Scheffel Identifying the Effect of Temporal Work Flexibility on Parental Time with Children , 2011 .

[42]  Wolfgang K. Härdle,et al.  Difference Based Ridge and Liu Type Estimators in Semiparametric Regression Models , 2011, J. Multivar. Anal..

[43]  J. Diels,et al.  The impact of context and promotion on consumer responses and preferences in out-of-stock situations , 2011 .

[44]  Xiaolian Liu,et al.  Can crop yield risk be globally diversified , 2011 .

[45]  Russ Moro,et al.  Forecasting Corporate Distress in the Asian and Pacific Region , 2011 .

[46]  J. Huriot,et al.  Economics of Cities , 2000 .

[47]  W. Härdle,et al.  Localising Temperature Risk , 2010 .

[48]  Y. Tse,et al.  A Multivariate GARCH Model with Time-Varying Correlations , 2000 .

[49]  M. Nielsen,et al.  Directional Congestion and Regime Switching in a Long Memory Model for Electricity Prices , 2005 .

[50]  U. Bindseil,et al.  The Basel III framework for liquidity standards and monetary policy , 2011 .

[51]  Marius Ooms,et al.  Periodic Heteroskedastic Regarfima Models for Daily Electricity Spot Prices , 2003 .

[52]  R. Engle,et al.  Multivariate Simultaneous Generalized ARCH , 1995, Econometric Theory.

[53]  Soyoung Q. Park,et al.  Neurobiology of Value Integration: When Value Impacts Valuation , 2011, The Journal of Neuroscience.

[54]  Kartik Anand,et al.  A Network Model of Financial System Resilience , 2011 .

[55]  Sören Preibusch,et al.  Unwillingness to Pay for Privacy: A Field Experiment , 2011, SSRN Electronic Journal.

[56]  Hauke R. Heekeren,et al.  The Neural Basis of Following Advice , 2011, PLoS biology.

[57]  Sascha Wilkens,et al.  The Pricing of Electricity Futures - Evidence from the European Energy Exchange , 2007 .

[58]  Wolfgang Härdle,et al.  Spatial Risk Premium on Weather Derivatives and Hedging Weather Exposure in Electricity , 2011 .

[59]  S. Borovkova,et al.  Analysis and Modelling of Electricity Futures Prices , 2006 .

[60]  L. Bauwens,et al.  Multivariate GARCH Models: A Survey , 2003 .

[61]  Siem Jan Koopman,et al.  Periodic Seasonal Reg-ARFIMA–GARCH Models for Daily Electricity Spot Prices , 2007 .

[62]  G. P. Aielli,et al.  Dynamic Conditional Correlation: On Properties and Estimation , 2011 .

[63]  M. Nielsen,et al.  A Regime Switching Long Memory Model for Electricity Prices , 2006 .

[64]  Marc S. Paolella,et al.  Mixed Normal Conditional Heteroskedasticity , 2004 .

[65]  P. Bickel,et al.  Large Vector Auto Regressions , 2011, 1106.3915.

[66]  W. Härdle Applied Nonparametric Regression , 1992 .

[67]  W. Härdle,et al.  A Confidence Corridor for Expectile Functions , 2011 .

[68]  Y. Tse,et al.  A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model With Time-Varying Correlations , 2002 .

[69]  Jacques-François Thisse,et al.  Economic Geography: The Integration of Regions and Nations , 2008 .

[70]  Santiago Moreno-Bromberg,et al.  Pollution Permits, Strategic Trading and Dynamic Technology Adoption , 2011 .

[71]  W. Härdle,et al.  Pricing Chinese Rain: A Multi-site Multi-Period Equilibrium Pricing Model for Rainfall Derivatives , 2011 .

[72]  Eric Ghysels,et al.  A Component Model for Dynamic Correlations , 2009 .

[73]  Markus Bibinger,et al.  An estimator for the quadratic covariation of asynchronously observed Itô processes with noise: Asymptotic distribution theory , 2011 .

[74]  Paul Belleflamme,et al.  Industrial Organization: Markets and Strategies , 2010 .

[75]  Matteo Marsili,et al.  Rollover Risk, Network Structure and Systemic Financial Crises , 2009 .

[76]  Wolfgang Härdle,et al.  Oracally Efficient Two-Step Estimation of Generalized Additive Model , 2011 .

[77]  R. Engle,et al.  Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns , 2003, SSRN Electronic Journal.

[78]  Y. Rozenholc,et al.  Pointwise adaptive estimation for quantile regression , 2011 .

[79]  W. Härdle,et al.  A Confidence Corridor for Sparse Longitudinal Data Curves , 2011 .

[80]  Timo Terasvirta,et al.  Multivariate GARCH Models , 2008 .

[81]  J. Gabszewicz La différenciation des produits , 2006 .

[82]  Wolfgang Härdle,et al.  Local quantile regression , 2013 .

[83]  Daniel Bienstock,et al.  Potential Function Methods for Approximately Solving Linear Programming Problems: Theory and Practice , 2002 .

[84]  Carol Alexander,et al.  Principal component models for generating large GARCH covariance matrices , 2002 .

[85]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[86]  Laurence A. Wolsey,et al.  Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 4th International Conference, CPAIOR 2007, Brussels, Belgium, May 23-26, 2007, Proceedings , 2007, CPAIOR.

[87]  Asymptotics of Asynchronicity , 2011, 1106.4222.

[88]  Peter Kratz,et al.  Optimal liquidation in dark pools , 2013 .

[89]  Juliane Scheffel Compensation of Unusual Working Schedules , 2011 .

[90]  Dieter Nautz,et al.  The Information Content of Central Bank Interest Rate Projections: Evidence from New Zealand , 2012 .

[91]  Jacques-François Thisse,et al.  Monopolistic competition in general equilibrium: Beyond the CES , 2011 .

[92]  Marc S. Paolella,et al.  A New Approach to Markov-Switching GARCH Models , 2004 .

[93]  U. Horst,et al.  When to Cross the Spread: Curve Following with Singular Control , 2011 .

[94]  James Renegar,et al.  A mathematical view of interior-point methods in convex optimization , 2001, MPS-SIAM series on optimization.

[95]  Fang Yao Monetary Policy, Trend Inflation and Inflation Persistence , 2011 .

[96]  Sigbert Klinke Developing web-based tools for the teaching of statistics: Our Wikis and the German Wikipedia , 2011 .

[97]  R. Engle,et al.  The Spline-Garch Model for Low Frequency Volatility and its Global Macroeconomic Causes , 2006 .

[98]  T. Teräsvirta,et al.  Modeling Conditional Correlations of Asset Returns: A Smooth Transition Approach , 2015 .

[99]  Lydia Mechtenberg,et al.  A Strategic Mediator Who is Biased into the Same Direction as the Expert Can Improve Information Transmission , 2010 .

[100]  S. Johansen Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models , 1991 .

[101]  R. Amir Supermodularity and Complementarity in Economics: An Elementary Survey , 2003 .

[102]  Luc Bauwens,et al.  Theory and Inference for a Markov Switching GARCH Model , 2007 .

[103]  N. Hautsch,et al.  Predicting Bid-Ask Spreads Using Long Memory Autoregressive Conditional Poisson Models , 2011 .

[104]  Christian Gourieroux,et al.  Simulation-based econometric methods , 1996 .