Catching the k-NAESAT threshold

The best current estimates of the thresholds for the existence of solutions in random constraint satisfaction problems ('CSPs') mostly derive from the first and the second moment method. Yet apart from a very few exceptional cases these methods do not quite yield matching upper and lower bounds. According to deep but non-rigorous arguments from statistical mechanics, this discrepancy is due to a change in the geometry of the set of solutions called condensation that occurs shortly before the actual threshold for the existence of solutions (Krzakala, Montanari, Ricci-Tersenghi, Semerjian, Zdeborova: PNAS~2007). To cope with condensation, physicists have developed a sophisticated but non-rigorous formalism called Survey Propagation (Me-zard, Parisi, Zecchina: Science 2002). This formalism yields precise conjectures on the threshold values of many random CSPs. Here we develop a new Survey Propagation inspired second moment method for the random k-NAESAT problem, which is one of the standard benchmark problems in the theory of random CSPs. This new technique allows us to overcome the barrier posed by condensation rigorously. We prove that the threshold for the existence of solutions in random k-NAESAT is 2k-1ln2-(ln/2 2+1/4)+εk, where |εk| ≤ 2-(1-ok(1))k, thereby verifying the statistical mechanics conjecture for this problem.

[1]  Andreas Goerdt,et al.  A Threshold for Unsatisfiability , 1992, MFCS.

[2]  Assaf Naor,et al.  Rigorous location of phase transitions in hard optimization problems , 2005, Nature.

[3]  M. Talagrand,et al.  Bounds for diluted mean-fields spin glass models , 2004, math/0405357.

[4]  Lenka Zdeborová,et al.  Random Subcubes as a Toy Model for Constraint Satisfaction Problems , 2007, ArXiv.

[5]  L. Kirousis,et al.  Approximating the unsatisfiability threshold of random formulas , 1998 .

[6]  Bruce A. Reed,et al.  Mick gets some (the odds are on his side) (satisfiability) , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[7]  Alan M. Frieze,et al.  Random k-SAT: The Limiting Probability for Satisfiability for Moderately Growing k , 2008, Electron. J. Comb..

[8]  M. Mézard,et al.  Threshold values of random K-SAT from the cavity method , 2006 .

[9]  Andrea Montanari,et al.  Reconstruction and Clustering in Random Constraint Satisfaction Problems , 2011, SIAM J. Discret. Math..

[10]  Amin Coja-Oghlan,et al.  Algorithmic Barriers from Phase Transitions , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[11]  Riccardo Zecchina,et al.  Entropy landscape and non-Gibbs solutions in constraint satisfaction problems , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[13]  Charilaos Efthymiou A simple algorithm for random colouring G(n, d/n) using (2 + ε)d colours , 2012, SODA.

[14]  Amin Coja-Oghlan,et al.  On independent sets in random graphs , 2010, SODA '11.

[15]  A. Naor,et al.  The two possible values of the chromatic number of a random graph , 2005 .

[16]  E. Friedgut Hunting for sharp thresholds , 2005 .

[17]  Dimitris Achlioptas,et al.  THE THRESHOLD FOR RANDOM k-SAT IS 2k log 2 O(k) , 2004, FOCS 2004.

[18]  Yacine Boufkhad,et al.  A General Upper Bound for the Satisfiability Threshold of Random r-SAT Formulae , 1997, J. Algorithms.

[19]  Elchanan Mossel,et al.  Complete Convergence of Message Passing Algorithms for Some Satisfiability Problems , 2006, Theory Comput..

[20]  Michael Molloy,et al.  The exact satisfiability threshold for a potentially intractable random constraint satisfaction problem , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[21]  A. Gerschcnfeld,et al.  Reconstruction for Models on Random Graphs , 2007, FOCS 2007.

[22]  Amin Coja-Oghlan A Better Algorithm for Random k-SAT , 2009, ICALP.

[23]  Lenka Zdeborová,et al.  The condensation transition in random hypergraph 2-coloring , 2011, SODA.

[24]  Alan M. Frieze,et al.  Random k-Sat: A Tight Threshold For Moderately Growing k , 2005, Comb..

[25]  Two-oloring Random Hypergraphs , 2001 .

[26]  Y. Peres,et al.  The threshold for random k-SAT is 2k (ln 2 - O(k)) , 2003, STOC '03.

[27]  Amin Coja-Oghlan A Better Algorithm for Random k-SAT , 2010, SIAM J. Comput..

[28]  Thierry Mora,et al.  Pairs of SAT-assignments in random Boolean formulæ , 2005, Theor. Comput. Sci..

[29]  Olivier Dubois,et al.  The 3-XORSAT threshold , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[30]  Michael Krivelevich,et al.  Two-coloring random hypergraphs , 2002 .

[31]  Michele Leone,et al.  Replica Bounds for Optimization Problems and Diluted Spin Systems , 2002 .

[32]  Federico Ricci-Tersenghi,et al.  On the solution-space geometry of random constraint satisfaction problems , 2006, STOC '06.

[33]  Cristopher Moore,et al.  Random k-SAT: Two Moments Suffice to Cross a Sharp Threshold , 2003, SIAM J. Comput..

[34]  Andrea Montanari,et al.  Gibbs states and the set of solutions of random constraint satisfaction problems , 2006, Proceedings of the National Academy of Sciences.