Modeling and evaluation of d33 mode piezoelectric energy harvesters

A microfabricated d33 mode piezoelectric energy harvester (PEH) with unimorph cantilever structure patterned by interdigital electrodes was designed, fabricated and analyzed. New analytical expression for estimating output power was developed based on the modification of conformal mapping and Roundy's analytical modeling. The results using the new analytical equation can explain the effects of electrode design on the output power of d33 PEH. The output power increases with a longer finger width to a certain limit, and then decreases presumably due to depoling and polarization reversal by charge injection and charged defects in a piezoelectric layer.

[1]  Jung-Hyun Park,et al.  Development of MEMS piezoelectric energy harvesters , 2010 .

[2]  S. Roundy Energy Scavenging for Wireless Sensor Nodes with a Focus on Vibration-to-Electricity Conversion , 2003 .

[3]  Christopher R. Bowen,et al.  Optimisation of interdigitated electrodes for piezoelectric actuators and active fibre composites , 2006 .

[4]  C. Richards,et al.  Optimization of electromechanical coupling for a thin-film PZT membrane: II. Experiment , 2005 .

[5]  C. Ong,et al.  Ferroelectric BaxSr1−xTiO3 thin-film varactors with parallel plate and interdigital electrodes for microwave applications , 2008 .

[6]  Jung-Hyun Park,et al.  Comparison of Transduction Efficiency for Energy Harvester between Piezoelectric Modes , 2011 .

[7]  V. Fridkin,et al.  Nanoscale polarization manipulation and conductance switching in ultrathin films of a ferroelectric copolymer , 2003 .

[8]  S. Priya,et al.  Experimental investigation on the effect of top electrode diameter in PZT thick films , 2011 .

[9]  Sang-Gook Kim,et al.  Energy harvesting MEMS device based on thin film piezoelectric cantilevers , 2006 .

[10]  L. Eric Cross,et al.  Dielectric hysteresis from transverse electric fields in lead zirconate titanate thin films , 1999 .

[11]  Christoph Genzel,et al.  Residual Stress Analysis , 2006 .

[12]  P. Muralt,et al.  PZT thin films for microsensors and actuators: Where do we stand? , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[13]  S. Trolier-McKinstry,et al.  Thin Film Piezoelectrics for MEMS , 2004 .

[14]  S. Trolier-McKinstry,et al.  Longitudinal piezoelectric coefficient measurement for bulk ceramics and thin films using pneumatic pressure rig , 1999 .

[15]  J. Fluitman,et al.  Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry , 1992 .

[16]  Shadrach Roundy,et al.  On the Effectiveness of Vibration-based Energy Harvesting , 2005 .

[17]  A. Tagantsev,et al.  Space-charge influenced-injection model for conduction in Pb(ZrxTi1−x)O3 thin films , 1998 .

[18]  P. Muralt,et al.  Polarization reversal due to charge injection in ferroelectric films , 2005 .

[19]  F. Duval,et al.  Fabrication and modeling of high-frequency PZT composite thick film membrance resonators , 2004, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[20]  L. E. Cross,et al.  Determination of Young’s modulus of the reduced layer of a piezoelectric RAINBOW actuator , 1998 .

[21]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..

[22]  K. No,et al.  Residual Stress Analysis of Pt Bottom Electrodes on ZrO2/SiO2/Si and SiO2/Si Substrates for Pb(ZrTi)O3 Thick Films , 2000 .

[23]  W. Beckert,et al.  Modelling piezoelectric modules with interdigitated electrode structures , 2003 .

[24]  Chin-Hsiang Cheng,et al.  Effect of poling conditions on out-of-plane displacement for a shear mode PZT actuator , 2006 .

[25]  The influence of non-ferroelectric interface layers and inclusions on the imprint behavior of ferroelectric thin film capacitors , 2007, 2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics.

[26]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[27]  Paul K. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[28]  Ann Marie Sastry,et al.  Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems , 2008 .

[29]  K. Yao,et al.  Pseudo-epitaxial lead zirconate titanate thin film on silicon substrate with enhanced ferroelectric polarization , 2005 .

[30]  S. Choe,et al.  Analysis of Piezoelectric Materials for Energy Harvesting Devices under High-g Vibrations , 2007 .

[31]  Wan Y. Shih,et al.  Effect of length, width, and mode on the mass detection sensitivity of piezoelectric unimorph cantilevers , 2002 .

[32]  P. Srinivasan,et al.  Optimal Materials Selection for Bimaterial Piezoelectric Microactuators , 2008, Journal of Microelectromechanical Systems.

[33]  L. Eric Cross,et al.  Ferroelectric and antiferroelectric films for microelectromechanical systems applications , 2000 .

[34]  R. Igreja,et al.  Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure , 2004 .

[35]  J. Park,et al.  Modeling and Characterization of Piezoelectric $d_{33}$ -Mode MEMS Energy Harvester , 2010, Journal of Microelectromechanical Systems.

[36]  Dragan Damjanovic,et al.  Piezoelectric properties of rhombohedral Pb(Zr, Ti)O3 thin films with (100), (111), and “random” crystallographic orientation , 2000 .

[37]  Srinivas Tadigadapa,et al.  Lead zirconate titanate films for d33 mode cantilever actuators , 2003 .

[38]  S. Alkoy,et al.  Piezoelectric Sensors and Sensor Materials , 1998 .