STAR: A Structure and Texture Aware Retinex Model

Retinex theory is developed mainly to decompose an image into the illumination and reflectance components by analyzing local image derivatives. In this theory, larger derivatives are attributed to the changes in reflectance, while smaller derivatives are emerged in the smooth illumination. In this paper, we utilize exponentiated local derivatives (with an exponent <inline-formula> <tex-math notation="LaTeX">$\gamma $ </tex-math></inline-formula>) of an observed image to generate its structure map and texture map. The structure map is produced by been amplified with <inline-formula> <tex-math notation="LaTeX">$\gamma >1$ </tex-math></inline-formula>, while the texture map is generated by been shrank with <inline-formula> <tex-math notation="LaTeX">$\gamma < 1$ </tex-math></inline-formula>. To this end, we design exponential filters for the local derivatives, and present their capability on extracting accurate structure and texture maps, influenced by the choices of exponents <inline-formula> <tex-math notation="LaTeX">$\gamma $ </tex-math></inline-formula>. The extracted structure and texture maps are employed to regularize the illumination and reflectance components in Retinex decomposition. A novel Structure and Texture Aware Retinex (STAR) model is further proposed for illumination and reflectance decomposition of a single image. We solve the STAR model by an alternating optimization algorithm. Each sub-problem is transformed into a vectorized least squares regression, with closed-form solutions. Comprehensive experiments on commonly tested datasets demonstrate that, the proposed STAR model produce better quantitative and qualitative performance than previous competing methods, on illumination and reflectance decomposition, low-light image enhancement, and color correction. The code is publicly available at <uri>https://github.com/csjunxu/STAR</uri>.

[1]  David Zhang,et al.  Multi-channel Weighted Nuclear Norm Minimization for Real Color Image Denoising , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[2]  Theo Gevers,et al.  Color Constancy by GANs: An Experimental Survey , 2018, ArXiv.

[3]  Michael Elad,et al.  A Variational Framework for Retinex , 2002, IS&T/SPIE Electronic Imaging.

[4]  Kai-Fu Yang,et al.  Efficient illuminant estimation for color constancy using grey pixels , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Yun-Ta Tsai,et al.  Fast Fourier Color Constancy , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Sylvain Lefebvre,et al.  State of the Art in Example-based Texture Synthesis , 2009, Eurographics.

[7]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[8]  Jitendra Malik,et al.  Color Constancy, Intrinsic Images, and Shape Estimation , 2012, ECCV.

[9]  Alessandro Rizzi,et al.  Mathematical definition and analysis of the retinex algorithm. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[10]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[11]  David Zhang,et al.  A Hybrid l1-l0 Layer Decomposition Model for Tone Mapping , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[12]  H. D. Cheng,et al.  A simple and effective histogram equalization approach to image enhancement , 2004, Digit. Signal Process..

[13]  Aichi Chien,et al.  An L1-based variational model for Retinex theory and its application to medical images , 2011, CVPR 2011.

[14]  Yu Li,et al.  LIME: Low-Light Image Enhancement via Illumination Map Estimation , 2017, IEEE Transactions on Image Processing.

[15]  Hai-Miao Hu,et al.  Naturalness Preserved Enhancement Algorithm for Non-Uniform Illumination Images , 2013, IEEE Transactions on Image Processing.

[16]  Weimin Tan,et al.  RDGAN: Retinex Decomposition Based Adversarial Learning for Low-Light Enhancement , 2019, 2019 IEEE International Conference on Multimedia and Expo (ICME).

[17]  Stephen Lin,et al.  FC^4: Fully Convolutional Color Constancy with Confidence-Weighted Pooling , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Michael K. Ng,et al.  A Total Variation Model for Retinex , 2011, SIAM J. Imaging Sci..

[19]  Xiao-Ping Zhang,et al.  A Probabilistic Method for Image Enhancement With Simultaneous Illumination and Reflectance Estimation , 2015, IEEE Transactions on Image Processing.

[20]  Lei Zhang,et al.  PID Controller-Based Stochastic Optimization Acceleration for Deep Neural Networks , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[21]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[22]  Chul Lee,et al.  Contrast Enhancement Based on Layered Difference Representation of 2D Histograms , 2013, IEEE Transactions on Image Processing.

[23]  Michael S. Brown,et al.  Single Image Layer Separation Using Relative Smoothness , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Alan C. Bovik,et al.  Making a “Completely Blind” Image Quality Analyzer , 2013, IEEE Signal Processing Letters.

[25]  Delu Zeng,et al.  A fusion-based enhancing method for weakly illuminated images , 2016, Signal Process..

[26]  Xiang Bai,et al.  Richer Convolutional Features for Edge Detection , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Edward H. Adelson,et al.  Recovering intrinsic images from a single image , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  David Zhang,et al.  Patch Group Based Nonlocal Self-Similarity Prior Learning for Image Denoising , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[29]  K. Hohn,et al.  Determining Lightness from an Image , 2004 .

[30]  Stephen Lin,et al.  A Closed-Form Solution to Retinex with Nonlocal Texture Constraints , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Andrew Blake,et al.  Bayesian color constancy revisited , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Qi Zhang,et al.  Rolling Guidance Filter , 2014, ECCV.

[33]  Ling Shao,et al.  NLH: A Blind Pixel-Level Non-Local Method for Real-World Image Denoising , 2019, IEEE Transactions on Image Processing.

[34]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[35]  Hongyi Liu,et al.  Variational Bayesian Method for Retinex , 2014, IEEE Transactions on Image Processing.

[36]  S. Osher,et al.  A TV Bregman iterative model of Retinex theory , 2012 .

[37]  Ling Shao,et al.  Scaled Simplex Representation for Subspace Clustering , 2018, IEEE Transactions on Cybernetics.

[38]  Xuelong Li,et al.  Intrinsic images using optimization , 2011, CVPR 2011.

[39]  Xiaohui Liang,et al.  No-reference synthetic image quality assessment with convolutional neural network and local image saliency , 2019, Computational Visual Media.

[40]  Raimondo Schettini,et al.  Color constancy using CNNs , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[41]  Philip H. S. Torr,et al.  BING: Binarized normed gradients for objectness estimation at 300fps , 2014, Computational Visual Media.

[42]  G. Buchsbaum A spatial processor model for object colour perception , 1980 .

[43]  Jitendra Malik,et al.  Intrinsic Scene Properties from a Single RGB-D Image , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[44]  Daniel Cohen-Or,et al.  Unsupervised natural image patch learning , 2018, Computational Visual Media.

[45]  Xiaoqun Zhang,et al.  Retinex by Higher Order Total Variation L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}$$\end{document} Decomp , 2015, Journal of Mathematical Imaging and Vision.

[46]  Edward H. Adelson,et al.  Ground truth dataset and baseline evaluations for intrinsic image algorithms , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[47]  Ali Borji,et al.  Salient object detection: A survey , 2014, Computational Visual Media.

[48]  Jean-Michel Morel,et al.  A PDE Formalization of Retinex Theory , 2010, IEEE Transactions on Image Processing.

[49]  Alan C. Bovik,et al.  Image information and visual quality , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[50]  Xiaoyan Sun,et al.  Structure-Revealing Low-Light Image Enhancement Via Robust Retinex Model , 2018, IEEE Transactions on Image Processing.

[51]  Yongjie Li,et al.  Efficient Color Constancy with Local Surface Reflectance Statistics , 2014, ECCV.

[52]  Turgay Çelik,et al.  Contextual and Variational Contrast Enhancement , 2011, IEEE Transactions on Image Processing.

[53]  Joost van de Weijer,et al.  Author Manuscript, Published in "ieee Transactions on Image Processing Edge-based Color Constancy , 2022 .

[54]  Jinhui Tang,et al.  Richer Convolutional Features for Edge Detection , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  E H Land,et al.  Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Ling Shao,et al.  Noisy-As-Clean: Learning Unsupervised Denoising from the Corrupted Image , 2019, ArXiv.

[57]  Philip H. S. Torr,et al.  BING: Binarized normed gradients for objectness estimation at 300fps , 2019, Computational Visual Media.

[58]  David Zhang,et al.  Simultaneous Fidelity and Regularization Learning for Image Restoration , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Jonathan T. Barron,et al.  Convolutional Color Constancy , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[60]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[61]  D H Brainard,et al.  Analysis of the retinex theory of color vision. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[62]  Zia-ur Rahman,et al.  Properties and performance of a center/surround retinex , 1997, IEEE Trans. Image Process..

[63]  Edoardo Provenzi,et al.  Issues About Retinex Theory and Contrast Enhancement , 2009, International Journal of Computer Vision.

[64]  John J. McCann,et al.  Retinex in Matlab , 2000, CIC.

[65]  Zia-ur Rahman,et al.  A multiscale retinex for bridging the gap between color images and the human observation of scenes , 1997, IEEE Trans. Image Process..

[66]  David Zhang,et al.  Patch Group Based Bayesian Learning for Blind Image Denoising , 2016, ACCV Workshops.

[67]  Ren Bo,et al.  FLIC: Fast linear iterative clustering with active search , 2016, Computational Visual Media.

[68]  David Zhang,et al.  A Trilateral Weighted Sparse Coding Scheme for Real-World Image Denoising , 2018, ECCV.

[69]  William T. Freeman,et al.  Learning Local Evidence for Shading and Reflectance , 2001, ICCV.

[70]  E. Land The retinex theory of color vision. , 1977, Scientific American.

[71]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[72]  Michela Lecca,et al.  STAR: A Segmentation-Based Approximation of Point-Based Sampling Milano Retinex for Color Image Enhancement , 2018, IEEE Transactions on Image Processing.

[73]  Graham D. Finlayson,et al.  Shades of Gray and Colour Constancy , 2004, CIC.

[74]  Liangpei Zhang,et al.  A Perceptually Inspired Variational Method for the Uneven Intensity Correction of Remote Sensing Images , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[75]  Dacheng Tao,et al.  A Joint Intrinsic-Extrinsic Prior Model for Retinex , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[76]  Wen Gao,et al.  A Bio-Inspired Multi-Exposure Fusion Framework for Low-light Image Enhancement , 2017, ArXiv.

[77]  Edoardo Provenzi,et al.  A Perceptually Inspired Variational Framework for Color Enhancement , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[78]  Stanley Osher,et al.  Non-Local Retinex - A Unifying Framework and Beyond , 2015, SIAM J. Imaging Sci..

[79]  Brian A. Wandell,et al.  A spatial extension of CIELAB for digital color‐image reproduction , 1997 .

[80]  David Zhang,et al.  External Prior Guided Internal Prior Learning for Real-World Noisy Image Denoising , 2017, IEEE Transactions on Image Processing.

[81]  Li Xu,et al.  Structure extraction from texture via relative total variation , 2012, ACM Trans. Graph..

[82]  Xiao-Ping Zhang,et al.  A Weighted Variational Model for Simultaneous Reflectance and Illumination Estimation , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).