Genomic profiling of glioblastoma: convergence of fundamental biologic tenets and novel insights

[1]  M. Roizen,et al.  Hallmarks of Cancer: The Next Generation , 2012 .

[2]  C. Brennan,et al.  Molecular subclassification of diffuse gliomas: Seeing order in the chaos , 2011, Glia.

[3]  Tae-Min Kim,et al.  A developmental taxonomy of glioblastoma defined and maintained by MicroRNAs. , 2011, Cancer research.

[4]  J. Licht,et al.  Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. , 2010, Cancer cell.

[5]  G. Riggins,et al.  Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. , 2010, Cancer research.

[6]  R. Wilson,et al.  Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. , 2010, Cancer cell.

[7]  M. Caligiuri,et al.  IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[8]  Jean Y. J. Wang,et al.  Targeting the RB-pathway in Cancer Therapy , 2010, Clinical Cancer Research.

[9]  R. Prayson,et al.  The pathobiology of glioma tumors. , 2010, Annual review of pathology.

[10]  Wei Keat Lim,et al.  The transcriptional network for mesenchymal transformation of brain tumors , 2009, Nature.

[11]  J. Schlessinger,et al.  Cell Signaling by Receptor Tyrosine Kinases , 2000, Cell.

[12]  R. Prayson,et al.  Mutational Heterogeneity in Human Cancers : Origin and Consequences , 2010 .

[13]  Yuan Qi,et al.  Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA , IDH 1 , EGFR , and NF 1 Citation Verhaak , 2010 .

[14]  J. Norman,et al.  Mutant p53 Drives Invasion by Promoting Integrin Recycling , 2009, Cell.

[15]  V. Velculescu,et al.  Mutant metabolic enzymes are at the origin of gliomas. , 2009, Cancer research.

[16]  R. McLendon,et al.  IDH1 and IDH2 mutations in gliomas. , 2009, The New England journal of medicine.

[17]  L. Liau,et al.  Cancer-associated IDH1 mutations produce 2-hydroxyglutarate , 2009, Nature.

[18]  M. Moran,et al.  Epidermal growth factor receptor variant III-induced glioma invasion is mediated through myristoylated alanine-rich protein kinase C substrate overexpression. , 2009, Cancer research.

[19]  Ken Chen,et al.  Recurring mutations found by sequencing an acute myeloid leukemia genome. , 2009, The New England journal of medicine.

[20]  Melissa Bondy,et al.  Genome-wide association study identifies five susceptibility loci for glioma , 2009, Nature Genetics.

[21]  R. Beroukhim,et al.  Proteasomal and genetic inactivation of the NF1 tumor suppressor in gliomagenesis. , 2009, Cancer cell.

[22]  Alexander R. Pico,et al.  Variants in the CDKN2B and RTEL1 regions are associated with high grade glioma susceptibility , 2009, Nature Genetics.

[23]  Jesse J Salk,et al.  Cancer genome sequencing--an interim analysis. , 2009, Cancer research.

[24]  Kun-Liang Guan,et al.  Glioma-Derived Mutations in IDH1 Dominantly Inhibit IDH1 Catalytic Activity and Induce HIF-1α , 2009, Science.

[25]  M. Stratton,et al.  The cancer genome , 2009, Nature.

[26]  T. Efferth,et al.  Molecular principles of cancer invasion and metastasis (review). , 2009, International journal of oncology.

[27]  J. Uhm An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2009 .

[28]  J. Uhm Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2009 .

[29]  Santosh Kesari,et al.  Malignant gliomas in adults. , 2008, The New England journal of medicine.

[30]  M. Westphal,et al.  Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria , 2008, Oncogene.

[31]  John D. Haley,et al.  EGFR signaling networks in cancer therapy , 2008 .

[32]  Webster K. Cavenee,et al.  Erratum: The 2007 WHO classification of tumours of the central nervous system (Acta Neuropathol (2007) vol. 114 (97-109)) , 2007 .

[33]  Keith L. Ligon,et al.  Coactivation of Receptor Tyrosine Kinases Affects the Response of Tumor Cells to Targeted Therapies , 2007, Science.

[34]  B. Scheithauer,et al.  The 2007 WHO classification of tumours of the central nervous system , 2007, Acta Neuropathologica.

[35]  N. Bache,et al.  Protein Composition of Catalytically Active Human Telomerase from Immortal Cells , 2007, Science.

[36]  J. Nakamura The epidermal growth factor receptor in malignant gliomas: pathogenesis and therapeutic implications , 2007, Expert opinion on therapeutic targets.

[37]  Zora Modrusan,et al.  Identification of IGF2 signaling through phosphoinositide-3-kinase regulatory subunit 3 as a growth-promoting axis in glioblastoma , 2007, Proceedings of the National Academy of Sciences.

[38]  G. Zupi,et al.  Involvement of RB gene family in tumor angiogenesis , 2006, Oncogene.

[39]  D. Easton,et al.  A prospective study of neurofibromatosis type 1 cancer incidence in the UK , 2006, British Journal of Cancer.

[40]  Thomas D. Wu,et al.  Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. , 2006, Cancer cell.

[41]  H. Erdjument-Bromage,et al.  Histone demethylation by a family of JmjC domain-containing proteins , 2006, Nature.

[42]  D. Gutmann,et al.  Inactivation of NF1 in CNS causes increased glial progenitor proliferation and optic glioma formation , 2005, Development.

[43]  Yiling Lu,et al.  Exploiting the PI3K/AKT Pathway for Cancer Drug Discovery , 2005, Nature Reviews Drug Discovery.

[44]  Jing Xu,et al.  Expression of transcription factor E2F1 and telomerase in glioblastomas: mechanistic linkage and prognostic significance. , 2005, Journal of the National Cancer Institute.

[45]  T. Fan,et al.  Caspase family proteases and apoptosis. , 2005, Acta biochimica et biophysica Sinica.

[46]  D. Botstein,et al.  Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[48]  Bart Landuyt,et al.  Vascular Endothelial Growth Factor and Angiogenesis , 2004, Pharmacological Reviews.

[49]  S. Lowe,et al.  Intrinsic tumour suppression , 2004, Nature.

[50]  Myriam Bernaudin,et al.  HIF1 and oxygen sensing in the brain , 2004, Nature Reviews Neuroscience.

[51]  Michael Berger,et al.  Apoptosis - the p53 network , 2003, Journal of Cell Science.

[52]  Eytan Domany,et al.  Classification of human astrocytic gliomas on the basis of gene expression: a correlated group of genes with angiogenic activity emerges as a strong predictor of subtypes. , 2003, Cancer research.

[53]  T. Golub,et al.  Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. , 2003, Cancer research.

[54]  Robert H Miller,et al.  Control of Astrocyte Migration in the Developing Cerebral Cortex , 2003, Developmental Neuroscience.

[55]  P. Dirks,et al.  A human brain tumor-derived PDGFR-α deletion mutant is transforming , 2003, Oncogene.

[56]  P. Dirks,et al.  A human brain tumor-derived PDGFR-alpha deletion mutant is transforming. , 2003, Oncogene.

[57]  J. Downward Targeting RAS signalling pathways in cancer therapy , 2003, Nature Reviews Cancer.

[58]  F. McCormick,et al.  The RB and p53 pathways in cancer. , 2002, Cancer cell.

[59]  Mark R Gilbert,et al.  Gene expression microarray analysis reveals YKL-40 to be a potential serum marker for malignant character in human glioma. , 2002, Cancer research.

[60]  Lewis C Cantley,et al.  The phosphoinositide 3-kinase pathway. , 2002, Science.

[61]  Wei Zhang,et al.  Molecular Classification of Human Diffuse Gliomas by Multidimensional Scaling Analysis of Gene Expression Profiles Parallels Morphology‐Based Classification, Correlates with Survival, and Reveals Clinically‐Relevant Novel Glioma Subsets , 2002, Brain pathology.

[62]  Y. Yonekawa,et al.  Concurrent Inactivation of RB1 and TP53 Pathways in Anaplastic Oligodendrogliomas , 2001, Journal of neuropathology and experimental neurology.

[63]  Eric C. Holland,et al.  Gliomagenesis: genetic alterations and mouse models , 2001, Nature Reviews Genetics.

[64]  O. Kallioniemi,et al.  Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. , 2000, Cancer research.

[65]  Lynda Chin,et al.  Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice , 2000, Nature.

[66]  N. Ahn,et al.  Oncogenes and tumor angiogenesis: differential modes of vascular endothelial growth factor up-regulation in ras-transformed epithelial cells and fibroblasts. , 2000, Cancer Research.

[67]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[68]  M. Robinson,et al.  Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. , 1999, Genes & development.

[69]  T. Veikkola,et al.  VEGFs, receptors and angiogenesis. , 1999, Seminars in cancer biology.

[70]  V. Dixit,et al.  Apoptosis control by death and decoy receptors. , 1999, Current opinion in cell biology.

[71]  S. K. Malhotra,et al.  Reactive astrocytes: cellular and molecular cues to biological function , 1997, Trends in Neurosciences.

[72]  W Arap,et al.  Cyclin-dependent kinase 6 (CDK6) amplification in human gliomas identified using two-dimensional separation of genomic DNA. , 1997, Cancer research.

[73]  C. Harris,et al.  p53 tumor suppressor gene: from the basic research laboratory to the clinic--an abridged historical perspective. , 1996, Carcinogenesis.

[74]  D. Louis,et al.  The retinoblastoma gene is involved in malignant progression of astrocytomas , 1994, Annals of neurology.

[75]  須川 典亮 Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas , 1992 .

[76]  P. Zelenka Proto‐oncogenes in cell differentiation , 1990, BioEssays : news and reviews in molecular, cellular and developmental biology.

[77]  E. E. Gresch Genetic Alterations During Colorectal-Tumor Development , 1989 .

[78]  E. Harlow,et al.  The retinoblastoma protein is phosphorylated during specific phases of the cell cycle , 1989, Cell.

[79]  E. Alexander,et al.  Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. , 1978, Journal of neurosurgery.

[80]  L. Hayflick THE LIMITED IN VITRO LIFETIME OF HUMAN DIPLOID CELL STRAINS. , 1965, Experimental cell research.