A Riemann–Hilbert approach for the Degasperis–Procesi equation

We present an inverse scattering transform approach to the Cauchy problem on the line for the Degasperis--Procesi equation $u_t-u_{txx}+3\omega u_x+4uu_x=3u_xu_{xx}+uu_{xxx}$ in the form of an associated Riemann-Hilbert problem. This approach allows us to give a representation of the solution to the Cauchy problem, which can be efficiently used in studying its long-time behavior.

[1]  J. Lenells The Scattering Approach for the Camassa–Holm equation , 2002, nlin/0306021.

[2]  A. B. D. Monvel,et al.  Long time asymptotics of the Camassa–Holm equation on the half-line , 2009, Annales de l’institut Fourier.

[3]  Yoshimasa Matsuno,et al.  Cusp and loop soliton solutions of short-wave models for the Camassa–Holm and Degasperis–Procesi equations , 2006 .

[4]  A. Constantin On the scattering problem for the Camassa-Holm equation , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  Jonatan Lenells,et al.  Inverse scattering transform for the Degasperis–Procesi equation , 2010, 1205.4754.

[6]  Darryl D. Holm,et al.  Новое интегрируемое уравнение с пиконными решениями@@@A New Integrable Equation with Peakon Solutions , 2002 .

[7]  Ronald R. Coifman,et al.  Scattering and inverse scattering for first order systems , 1984 .

[8]  Pascal Redou,et al.  On the Inverse Scattering Approach to the Camassa-Holm Equation , 2003, math-ph/0403039.

[9]  Yoshimasa Matsuno,et al.  The N-soliton solution of the Degasperis–Procesi equation , 2005, nlin/0511029.

[10]  P. Caudrey The inverse problem for a general N × N spectral equation , 1982 .

[11]  V. Gerdjikov,et al.  Inverse scattering transform for the Camassa–Holm equation , 2006, Inverse Problems.

[12]  Darryl D. Holm,et al.  A New Integrable Shallow Water Equation , 1994 .

[13]  R. Johnson,et al.  On solutions of the Camassa-Holm equation , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .

[15]  Gerald Teschl,et al.  Long-time Asymptotics for the Camassa-Holm Equation , 2009, SIAM J. Math. Anal..

[16]  Dmitry Shepelsky,et al.  Painlevé-Type Asymptotics for the Camassa-Holm Equation , 2010, SIAM J. Math. Anal..

[17]  A. B. D. Monvel,et al.  Riemann-Hilbert approach for the Camassa-Holm equation on the line , 2006 .

[18]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.