A Riemann–Hilbert approach for the Degasperis–Procesi equation
暂无分享,去创建一个
[1] J. Lenells. The Scattering Approach for the Camassa–Holm equation , 2002, nlin/0306021.
[2] A. B. D. Monvel,et al. Long time asymptotics of the Camassa–Holm equation on the half-line , 2009, Annales de l’institut Fourier.
[3] Yoshimasa Matsuno,et al. Cusp and loop soliton solutions of short-wave models for the Camassa–Holm and Degasperis–Procesi equations , 2006 .
[4] A. Constantin. On the scattering problem for the Camassa-Holm equation , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[5] Jonatan Lenells,et al. Inverse scattering transform for the Degasperis–Procesi equation , 2010, 1205.4754.
[6] Darryl D. Holm,et al. Новое интегрируемое уравнение с пиконными решениями@@@A New Integrable Equation with Peakon Solutions , 2002 .
[7] Ronald R. Coifman,et al. Scattering and inverse scattering for first order systems , 1984 .
[8] Pascal Redou,et al. On the Inverse Scattering Approach to the Camassa-Holm Equation , 2003, math-ph/0403039.
[9] Yoshimasa Matsuno,et al. The N-soliton solution of the Degasperis–Procesi equation , 2005, nlin/0511029.
[10] P. Caudrey. The inverse problem for a general N × N spectral equation , 1982 .
[11] V. Gerdjikov,et al. Inverse scattering transform for the Camassa–Holm equation , 2006, Inverse Problems.
[12] Darryl D. Holm,et al. A New Integrable Shallow Water Equation , 1994 .
[13] R. Johnson,et al. On solutions of the Camassa-Holm equation , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[14] P. Deift,et al. A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .
[15] Gerald Teschl,et al. Long-time Asymptotics for the Camassa-Holm Equation , 2009, SIAM J. Math. Anal..
[16] Dmitry Shepelsky,et al. Painlevé-Type Asymptotics for the Camassa-Holm Equation , 2010, SIAM J. Math. Anal..
[17] A. B. D. Monvel,et al. Riemann-Hilbert approach for the Camassa-Holm equation on the line , 2006 .
[18] Darryl D. Holm,et al. An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.