An update on polar aerosol optical properties using POLAR-AOD and other measurements performed during the International Polar Year

An updated set of time series of derived aerosol optical depth (AOD) and Angstrom’s exponent a from a number of Arctic and Antarctic stations was analyzed to determine the long-termvariations of these two parameters. The Arctic measurements were performed at Ny-Alesund (1991e2010), Barrow (1977e2010) and some Siberian sites (1981e1991). The data were integrated with Level 2.0 AERONET sun-photometer measurements recorded at Hornsund, Svalbard, and Barrow for recent years, and at Tiksi for the summer 2010. The Antarctic data-set comprises sun-photometer measurements performed at Mirny (1982e2009), Neumayer (1991e2004), and Terra Nova Bay (1987e2005), and at South Pole (1977e2010). Analyses of

[1]  Shao-Meng Li,et al.  A three-dimensional characterization of Arctic aerosols from airborne Sun photometer observations: PAM-ARCMIP, April 2009 , 2010 .

[2]  Glenn E. Shaw,et al.  Optical properties of boreal region biomass burning aerosols in central Alaska and seasonal variation of aerosol optical depth at an Arctic coastal site , 2009 .

[3]  A. Stohl,et al.  Validation of the lagrangian particle dispersion model FLEXPART against large-scale tracer experiment data , 1998 .

[4]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[5]  I. Tang Chemical and size effects of hygroscopic aerosols on light scattering coefficients , 1996 .

[6]  D. Davisd,et al.  Major ions and radionuclides in aerosol particles from the South Pole during ISCAT-2000 , 2004 .

[7]  A. Hogan,et al.  Physical properties of the aerosol at the South Pole , 1979 .

[8]  Marika M. Holland,et al.  Future abrupt reductions in the summer Arctic sea ice , 2006 .

[9]  P. Quinn,et al.  Arctic haze: current trends and knowledge gaps , 2007 .

[10]  Glenn E. Shaw,et al.  Atmospheric Turbidity in the Polar Regions. , 1982 .

[11]  Properties and decay of stratospheric aerosols in the Arctic following the 1991 eruptions of Mount Pinatubo , 1993 .

[12]  E. Dutton,et al.  SOLAR RADIATIVE FORCING AT SELECTED LOCATIONS AND EVIDENCE FOR GLOBAL LOWER TROPOSPHERIC COOLING FOLLOWING THE ERUPTIONS OF EL , 1992 .

[13]  H. Hansson,et al.  One year of particle size distribution and aerosol chemical composition measurements at the Zeppelin Station, Svalbard, March 2000?March 2001 , 2003 .

[14]  A. Stohl,et al.  Pan-Arctic enhancement of light absorbing aerosol concentration due to North American boreal forest fires during summer 2004 , 2006 .

[15]  R. Weller,et al.  Atmospheric methane sulfonate and non-sea-salt sulfate records at the European Project for Ice Coring in Antarctica (EPICA) deep-drilling site in Dronning Maud Land, Antarctica , 2006 .

[16]  Robert S. Stone MONITORING AEROSOL OPTICAL DEPTH AT BARROW , ALASKA AND SOUTH POLE ; HISTORICAL OVERVIEW , RECENT RESULTS , AND FUTURE GOALS , 2002 .

[17]  V. Radionov Variability of aerosol extinction of solar radiation in Antarctica , 1994, Antarctic Science.

[18]  V. Ramaswamy,et al.  Hygroscopic and optical properties of organic sea salt aerosol and consequences for climate forcing , 2004 .

[19]  Larry W. Thomason,et al.  Tropical stratospheric aerosol layer from CALIPSO lidar observations , 2009 .

[20]  Lieven Clarisse,et al.  Observations of the eruption of the Sarychev volcano and simulations using the HadGEM2 climate model. , 2010 .

[21]  Vladimir F. Radionov,et al.  Changes in the Aerosol Optical Depth of the Antarctic Atmsophere , 2002 .

[22]  G. König‐Langlo,et al.  Seasonal variability of crustal and marine trace elements in the aerosol at Neumayer station, Antarctica , 2008 .

[23]  E. Bigg Comparison of Aerosol at Four Baseline Atmospheric Monitoring Stations , 1980 .

[24]  H. Hansson,et al.  One year of particle size distribution and aerosol chemical composition measurements at the Zeppelin Station, Svalbard , 2003 .

[25]  Simon A. Carn,et al.  Long range transport and fate of a stratospheric volcanic cloud from Soufriere Hills volcano, Montserrat , 2007 .

[26]  David J. Delene,et al.  Variability of Aerosol Optical Properties at Four North American Surface Monitoring Sites , 2002 .

[27]  R. Hillamo,et al.  Chemical size distributions of boundary layer aerosol over the Atlantic Ocean and at an Antarctic site , 2006 .

[28]  M. Hayashi,et al.  Chemistry of sea-salt particles and inorganic halogen species in Antarctic regions: Compositional differences between coastal and inland stations , 2004 .

[29]  A. Berk,et al.  Incursions and radiative impact of Asian dust in northern Alaska , 2007 .

[30]  Owen B. Toon,et al.  The optical constants of several atmospheric aerosol species: Ammonium sulfate, aluminum oxide, and sodium chloride , 1976 .

[31]  C. Gautier,et al.  The Effect of Non-Lambertian Surface Reflectance on Aerosol Radiative Forcing , 2005 .

[32]  J. Notholt,et al.  Continuous day and night aerosol optical depth observations in the Arctic between 1991 and 1999 , 2002 .

[33]  E. Shettle,et al.  Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties , 1979 .

[34]  G. Shaw Evidence for a central Eurasian source area of Arctic haze in Alaska , 1982, Nature.

[35]  H. Hansson,et al.  High Natural Aerosol Loading over Boreal Forests , 2006, Science.

[36]  Ulla Wandinger,et al.  Transport of boreal forest fire emissions from Canada , 2001 .

[37]  M. Fily,et al.  Surface characterisation of the Dome Concordia area (Antarctica) as a potential satellite calibration site, using Spot 4/Vegetation instrument , 2004 .

[38]  R. Neely,et al.  The Persistently Variable “Background” Stratospheric Aerosol Layer and Global Climate Change , 2011, Science.

[39]  A. Mannini,et al.  Chemical composition and physical features of summer aerosol at Terra Nova Bay and Dome C, Antarctica. , 2005, Journal of environmental monitoring : JEM.

[40]  Larry W. Thomason,et al.  Comparison of trends in the tropospheric and stratospheric aerosol optical depths in the Antarctic , 1993 .

[41]  Robert S. Stone,et al.  Ultraviolet and visible radiation at Barrow, Alaska: Climatology and influencing factors on the basis of version 2 National Science Foundation network data , 2007 .

[42]  G. Shaw,et al.  The Asian source of Arctic haze bands , 1977, Nature.

[43]  A. Stohl,et al.  Around the world in 17 days - hemispheric-scale transport of forest fire smoke from Russia in May 2003 , 2004 .

[44]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[45]  A. Stohl,et al.  Pan‐Arctic enhancements of light absorbing aerosol concentrations due to North American boreal forest fires during summer 2004 , 2006 .

[46]  Simon A. Carn,et al.  Properties of Sarychev sulphate aerosols over the Arctic , 2012 .

[47]  M. Andreae,et al.  Aerosols and Climate , 2002 .

[48]  G. Anderson,et al.  Radiative impact of boreal smoke in the Arctic: Observed and modeled , 2008 .

[49]  Robert S. Stone,et al.  Earlier spring snowmelt in northern Alaska as an indicator of climate change , 2002 .

[50]  D. Hofmann,et al.  Group Report : Connections between Aerosol Properties and Forcing of Climate , 2022 .

[51]  R. Hillamo,et al.  Mass Size Distributions and Precursor Gas Concentrations of Major Inorganic Ions in'Antarctic Aerosol , 1998 .

[52]  R. Stone Variations in western Arctic temperatures in response to cloud radiative and synoptic‐scale influences , 1997 .

[53]  B. Kravitz,et al.  Negligible climatic effects from the 2008 Okmok and Kasatochi volcanic eruptions , 2010 .

[54]  Max Frioud,et al.  Aerosols in polar regions: A historical overview based on optical depth and in situ observations , 2007 .

[55]  A. Lampert,et al.  Optical properties and sulfate scattering efficiency of boundary layer aerosol at coastal Neumayer Station, Antarctica , 2008 .

[56]  L. Barrie,et al.  Variations and sources of the equivalent black carbon in the high Arctic revealed by long‐term observations at Alert and Barrow: 1989–2003 , 2006 .

[57]  Teruyuki Nakajima,et al.  Retrievals of Antarctic aerosol characteristics using a Sun‐sky radiometer during the 2001–2002 austral summer campaign , 2005 .

[58]  R. Weller,et al.  Year-round chemical aerosol records in continental Antarctica obtained by automatic samplings , 2007 .

[59]  Glenn E. Shaw,et al.  A 3‐year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska , 2002 .

[60]  Roger G. Barry,et al.  A record minimum arctic sea ice extent and area in 2002 , 2003 .

[61]  A. Ångström The parameters of atmospheric turbidity , 1964 .

[62]  Harald Sodemann,et al.  Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output , 2010 .

[63]  A. Robock,et al.  SIMULATION AND OBSERVATIONS OF STRATOSPHERIC AEROSOLS FROM THE 2009 SARYCHEV VOLCANIC ERUPTION , 2011 .

[64]  P. Chyacutelek,et al.  Aerosols and climate. , 1974 .

[65]  L. D. Santis,et al.  Characterization of Ångström's turbidity parameters in the Po Valley area for summer conditions of the atmosphere , 1994 .

[66]  K. Stamnes,et al.  Arctic haze: Perturbation to the radiation field , 1993 .

[67]  E. Dutton,et al.  A long‐term decrease in Arctic haze at Barrow, Alaska , 1993 .

[68]  W. Zoller,et al.  Temporal variations and sources of elements in the South Pole atmosphere: 1. Nonenriched and moderately enriched elements , 1989 .

[69]  C. Tomasi,et al.  Multiwavelength sun-photometers for accurate measurements of atmospheric extinction in the visible and near-IR spectral range. , 1983, Applied optics.

[70]  L. Thomason,et al.  Volcanic perturbation of the atmosphere in both polar regions: 1991–1994 , 1996 .

[71]  Thomas A. Cahill,et al.  Asian aerosols in North America: Frequency and concentration of fine dust , 2002 .

[72]  E. Dutton,et al.  Reply [to Comment on A long term decrease in arctic haze at Barrow, Alaska by B.A. Bodhaine and E , 1995 .

[73]  Glenn E. Shaw,et al.  Antarctic aerosols: a review , 1988 .

[74]  E. Wolff,et al.  Concentrations and seasonal cycle of black carbon in aerosol at a coastal Antarctic station , 1998 .

[75]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[76]  Petr Chylek,et al.  Limits on climate sensitivity derived from recent satellite and surface observations , 2007 .

[77]  M. Wendisch,et al.  Measurements and modelling of aerosol single-scattering albedo : Progress, problems and prospects , 1997 .

[78]  A. Stohl,et al.  Arctic smoke – aerosol characteristics during a record smoke event in the European Arctic and its radiative impact , 2007 .

[79]  Judith C. Chow,et al.  Light absorption and thermal measurements of black carbon in different regions of Canada , 2002 .

[80]  P. Paatero,et al.  Atmospheric aerosol over Alaska: 2. Elemental composition and sources , 1998 .

[81]  R. Hillamo,et al.  Effective real refractive index of dry aerosols in the Antarctic boundary layer , 2006 .

[82]  John E. Barnes,et al.  Increase in background stratospheric aerosol observed with lidar at Mauna Loa Observatory and Boulder, Colorado , 2009 .

[83]  Roland Neuber,et al.  Lidar measurements of the Kasatochi aerosol plume in August and September 2008 in Ny‐Ålesund, Spitsbergen , 2010 .

[84]  V. Radionov,et al.  Long‐term variations in the turbidity of the arctic atmosphere in Russia , 1992 .

[85]  B. A. Bodhaine,et al.  Aerosol absorption measurements at Barrow, Mauna Loa and the south pole , 1995 .

[86]  J. Coakley,et al.  Climate Forcing by Anthropogenic Aerosols , 1992, Science.