Parallelization of a Monte Carlo algorithm for the simulation of polymer melts

The Continuum-configurational Bias Monte Carlo algorithm (CBMC) is a very efficient method for the simulation of polymer melts. This algorithm is well-suited to parallelization on shared-memory multiprocessors. The main effort for parallelization is often spent in the decomposition of the data structures and the design of the parallel program sections. We present some generally applicable methods to improve the optimization process on shared-memory multiprocessors using global address space and on distributed-memory multicomputers using message passing.

[1]  Anthony N. Burkitt,et al.  Parallel algorithms in computational science , 1991, Springer series in information sciences.

[2]  F Baskett,et al.  Microprocessors: From Desktops to Supercomputers , 1993, Science.

[3]  B. Shneiderman,et al.  Flowchart techniques for structured programming , 1973, SIGP.

[4]  L. Greengard The Rapid Evaluation of Potential Fields in Particle Systems , 1988 .

[5]  Juan J. Morales,et al.  Efficiency test of the traditonal MD and the link-cell methods , 1989 .

[6]  Richard H. Boyd,et al.  An off-lattice constant-pressure simulation of liquid polymethylene , 1989 .

[7]  Seymour V. Pollack Structured FORTRAN 77 programming , 1982 .

[8]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[9]  Juan J. de Pablo,et al.  Continuum-configurational-bias Monte Carlo simulations of long-chain alkanes , 1993 .

[10]  Robert L. Jernigan,et al.  Conformational Energies of n-Alkanes and the Random Configuration of Higher Homologs Including Polymethylene , 1966 .

[11]  G. C. Fox,et al.  Solving Problems on Concurrent Processors , 1988 .

[12]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[13]  Thomas P. Trappenberg,et al.  Development of massively parallel applications , 1994 .

[14]  Manuel Laso,et al.  Optimized atomic Lennard‐Jones 6–12 parameters for simulating pVT properties of a realistic polymethylene melt , 1995 .

[15]  M. Volkenstein,et al.  Statistical mechanics of chain molecules , 1969 .

[16]  A. W. Rosenbluth,et al.  MONTE CARLO CALCULATION OF THE AVERAGE EXTENSION OF MOLECULAR CHAINS , 1955 .

[17]  M. Okuda,et al.  The preparation of polymer melt samples for computer simulation studies , 1994 .

[18]  J. E. Gubernatis,et al.  N-Body Simulations on Massively Parallel Architectures , 1994 .

[19]  Juan J. de Pablo,et al.  Simulation of polyethylene above and below the melting point , 1992 .

[20]  U. Suter,et al.  Detailed molecular structure of a vinyl polymer glass , 1985 .

[21]  Oliver A. McBryan,et al.  An Overview of Message Passing Environments , 1994, Parallel Comput..

[22]  Wolfgang J. Paul,et al.  A special purpose parallel computer for molecular dynamics: motivation, design, implementation, and application , 1987 .

[23]  Daan Frenkel,et al.  Configurational bias Monte Carlo: a new sampling scheme for flexible chains , 1992 .

[24]  Robert O. Briggs,et al.  Cuba, communism, and computing , 1992, CACM.

[25]  F. T. Wall,et al.  Macromolecular dimensions obtained by an efficient Monte Carlo method without sample attrition , 1975 .