The role of visual and mechanosensory cues in structuring forward flight in Drosophila melanogaster

SUMMARY It has long been known that many flying insects use visual cues to orient with respect to the wind and to control their groundspeed in the face of varying wind conditions. Much less explored has been the role of mechanosensory cues in orienting insects relative to the ambient air. Here we show that Drosophila melanogaster, magnetically tethered so as to be able to rotate about their yaw axis, are able to detect and orient into a wind, as would be experienced during forward flight. Further, this behavior is velocity dependent and is likely subserved, at least in part, by the Johnston's organs, chordotonal organs in the antennae also involved in near-field sound detection. These wind-mediated responses may help to explain how flies are able to fly forward despite visual responses that might otherwise inhibit this behavior. Expanding visual stimuli, such as are encountered during forward flight, are the most potent aversive visual cues known for D. melanogaster flying in a tethered paradigm. Accordingly, tethered flies strongly orient towards a focus of contraction, a problematic situation for any animal attempting to fly forward. We show in this study that wind stimuli, transduced via mechanosensory means, can compensate for the aversion to visual expansion and thus may help to explain how these animals are indeed able to maintain forward flight.

[1]  T. Weis-Fogh,et al.  An Aerodynamic Sense Organ Stimulating and Regulating Flight in Locusts , 1949, Nature.

[2]  M. Gewecke Antennae: Another Wind-sensitive Receptor in Locusts , 1970, Nature.

[3]  M. Gewecke The Antennae of Insects as Air-Current Sense Organs and their Relationship to the Control of Flight , 1974 .

[4]  H. Heinzel,et al.  Role of antennae of the dragonfly Orthetrum cancellatum in flight control , 1974, Nature.

[5]  M. Gewecke,et al.  Control of the horizontal flight‐course by air‐current sense organs in Locusta migratoria , 1978 .

[6]  A. Ewing The antenna of Drosophila as a ‘love song’ receptor , 1978 .

[7]  A. Ludlow,et al.  An analysis of anemotactic zigzagging flight in male moths stimulated by pheromone , 1978 .

[8]  A. Ewing FUNCTIONAL ASPECTS OF DROSOPHILA COURTSHIP , 1983 .

[9]  Some aspects of the significance of the antennae as air-current sense organs in the measurement of flight speed in wasps. , 1990 .

[10]  M. Gewecke,et al.  Compensation of visually simulated wind drift in the swarming flight of the desert locust (Schistocerca gregaria) , 1991 .

[11]  Maurice J. Kernan,et al.  Genetically Similar Transduction Mechanisms for Touch and Hearing in Drosophila , 2000, The Journal of Neuroscience.

[12]  Michael H Dickinson,et al.  The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. , 2002, The Journal of experimental biology.

[13]  Michael H Dickinson,et al.  Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly, Drosophila melanogaster. , 2002, The Journal of experimental biology.

[14]  M. Göpfert,et al.  The mechanical basis of Drosophila audition. , 2002, The Journal of experimental biology.

[15]  Michael H Dickinson,et al.  Odor localization requires visual feedback during free flight in Drosophila melanogaster , 2003, Journal of Experimental Biology.

[16]  G. Schneider Die Halteren der Schmeissfliege (Calliphora) als Sinnesorgane und als mechanische Flugstabilisatoren , 1953, Zeitschrift für vergleichende Physiologie.

[17]  Monika Niehaus,et al.  Flight and flight control by the antennae in the Small Tortoiseshell (Aglais urticae L., Lepidoptera) , 2004, Journal of comparative physiology.

[18]  E. A. Arbas,et al.  Control of hindlimb posture by wind-sensitive hairs and antennae during locust flight , 1986, Journal of Comparative Physiology A.

[19]  M. Gewecke Der Bewegungsapparat der Antennen von Calliphora erythrocephala , 1967, Zeitschrift für Morphologie und Ökologie der Tiere.

[20]  Directional sensitivity of the antennal campaniform sensilla in locusts , 1979, Naturwissenschaften.

[21]  R. Cooter,et al.  The natural flight of the migratory locust,Locusta migratoria L. , 1979, Journal of comparative physiology.

[22]  Michael Gewecke,et al.  Die Wirkung von Luftströmung auf die Antennen und das Flugverhalten der blauen Schmeissfliege (Calliphora Erythrocephala) , 2004, Zeitschrift für vergleichende Physiologie.

[23]  Herbert Heran,et al.  Wahrnehmung und Regelung der Flugeigengeschwindigkeit bei Apis mellifica L. , 1959, Zeitschrift für vergleichende Physiologie.

[24]  Michael Gewecke,et al.  Flight and flight control by the antennae in the Small Tortoiseshell (Aglais urticae L., Lepidoptera) , 1981, Journal of comparative physiology.

[25]  M. Gewecke Bewegungsmechanismus und gelenkrezeptoren der Antennen von Locusta migratoria L. (Insecta, orthoptera) , 1972, Zeitschrift für Morphologie der Tiere.

[26]  M. Gewecke,et al.  The natural flight of the migratory locust,Locusta migratoria L. , 1981, Journal of comparative physiology.

[27]  M. Dickinson,et al.  Free-flight responses of Drosophila melanogaster to attractive odors , 2006, Journal of Experimental Biology.

[28]  Michael H Dickinson,et al.  Visual stimulation of saccades in magnetically tethered Drosophila , 2006, Journal of Experimental Biology.

[29]  S. Sane,et al.  Antennal Mechanosensors Mediate Flight Control in Moths , 2007, Science.

[30]  Michael H. Dickinson,et al.  A modular display system for insect behavioral neuroscience , 2008, Journal of Neuroscience Methods.

[31]  J. Kennedy The Visual Responses of Flying Mosquitoes. , 2009 .