Ultra-subwavelength phase-sensitive Fano-imaging of localized photonic modes

A purely optical method for realizing ultra-subwavelength phase-sensitive imaging of localized photonic modes has been developed. The technique combines scanning near-field optical microscopy with resonance scattering spectroscopy and involves monitoring the spatial variation of the Fano resonance line shape in photonic-crystal nanocavities. Using the technique, Niccolo Caselli and co-workers in Italy, the USA, the UK, and the Netherlands realized a spatial resolution of λ/19 (where λ is the wavelength) for the electric local density of optical states (LDOS). The technique can be applied to resonators made from any kind of material and over a wide spectral range. Furthermore, it does not suffer from bleaching or tip-induced perturbation. This demonstration opens up new strategies for investigating the electric LDOS and phase distribution of modes in a wide range of nanophotonic and nanoplasmonic resonators.

[1]  Maria Kafesaki,et al.  Controlling the resonance of a photonic crystal microcavity by a near-field probe. , 2005, Physical review letters.

[2]  Wilfried van Sark,et al.  Blueing, bleaching, and blinking of single CdSe/ZnS quantum dots , 2002 .

[3]  Javier Aizpurua,et al.  Controlling the near-field oscillations of loaded plasmonic nanoantennas , 2009 .

[4]  Niels Verellen,et al.  Fano resonances in individual coherent plasmonic nanocavities. , 2009, Nano letters.

[5]  A. Fiore,et al.  Enhanced spontaneous emission in a photonic-crystal light-emitting diode , 2008, 0805.2750.

[6]  D. Wiersma,et al.  Polarization-sensitive near-field investigation of photonic crystal microcavities , 2009 .

[7]  T. Baba,et al.  Observation of polarization singularities at the nanoscale , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[8]  Wei Bao,et al.  Mapping Local Charge Recombination Heterogeneity by Multidimensional Nanospectroscopic Imaging , 2012, Science.

[9]  Dirk Englund,et al.  Controlling cavity reflectivity with a single quantum dot , 2007, Nature.

[10]  M. Nirmal,et al.  Fluorescence intermittency in single cadmium selenide nanocrystals , 1996, Nature.

[11]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .

[12]  Shanhui Fan,et al.  Sharp asymmetric line shapes in side-coupled waveguide-cavity systems , 2002 .

[13]  M. Markham,et al.  Integrated high-quality factor optical resonators in diamond. , 2013, Nano letters.

[14]  M. Frimmer,et al.  Scanning emitter lifetime imaging microscopy for spontaneous emission control. , 2011, Physical review letters.

[15]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[16]  S. Gulde,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2007, Nature.

[17]  R. Carminati,et al.  Towards a full characterization of a plasmonic nanostructure with a fluorescent near-field probe. , 2013, Optics express.

[18]  A. Polman,et al.  Deep-subwavelength imaging of the modal dispersion of light. , 2012, Nature materials.

[19]  D. Wiersma,et al.  Spectral tuning and near-field imaging of photonic crystal microcavities , 2008 .

[20]  Dirk Englund,et al.  Ultrafast photonic crystal nanocavity laser , 2006 .

[21]  K. Joulain,et al.  Definition and measurement of the local density of electromagnetic states close to an interface , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[22]  G. Rempe,et al.  An elementary quantum network of single atoms in optical cavities , 2012, Nature.

[23]  I. Sagnes,et al.  High quality beaming and efficient free-space coupling in L3 photonic crystal active nanocavities. , 2012, Optics express.

[24]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[25]  R. McPhedran,et al.  Density of states functions for photonic crystals. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Annamaria Gerardino,et al.  Engineering of light confinement in strongly scattering disordered media. , 2014, Nature materials.

[27]  Thomas F. Krauss,et al.  Light scattering and Fano resonances in high-Q photonic crystal nanocavities , 2009 .

[28]  Yuri S. Kivshar,et al.  Fano Resonances in Nanoscale Structures , 2010 .

[29]  P. Guyot-Sionnest,et al.  Excitation of dark plasmons in metal nanoparticles by a localized emitter. , 2009, Physical review letters.

[30]  Dirk Englund,et al.  Controlling Cavity Reflectivity with a Single Quantum Dot , 2007 .

[31]  Kurt Busch,et al.  PHOTONIC BAND GAP FORMATION IN CERTAIN SELF-ORGANIZING SYSTEMS , 1998 .

[32]  Masaya Notomi,et al.  Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip , 2014, Nature Photonics.

[33]  A. Rahmani,et al.  Local observation and spectroscopy of optical modes in an active photonic-crystal microcavity. , 2005, Physical review letters.

[34]  Philippe Godignon,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[35]  Sanjay Krishna,et al.  Nanoscale quantum dot infrared sensors with photonic crystal cavity , 2006 .

[36]  Tim H. Taminiau,et al.  Optical antennas direct single-molecule emission , 2008 .

[37]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[38]  A. Fiore,et al.  Post-fabrication control of evanescent tunnelling in photonic crystal molecules , 2012 .

[39]  Jean-Claude Weeber,et al.  Relationship between scanning near-field optical images and local density of photonic states , 2001 .