Large Time Behavior via the Method of ℓ-Trajectories
暂无分享,去创建一个
[1] M. Hjortso,et al. Partial Differential Equations , 2010 .
[2] Dalibor Pražák,et al. On Finite Fractal Dimension of the Global Attractor for the Wave Equation with Nonlinear Damping , 2002 .
[3] Josef Málek,et al. On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case $p\geq2$ , 2001, Advances in Differential Equations.
[4] Josef Málek,et al. A Finite-Dimensional Attractor for Three-Dimensional Flow of Incompressible Fluids , 1996 .
[5] J. Málek. Weak and Measure-valued Solutions to Evolutionary PDEs , 1996 .
[6] Kumbakonam R. Rajagopal,et al. EXISTENCE AND REGULARITY OF SOLUTIONS AND THE STABILITY OF THE REST STATE FOR FLUIDS WITH SHEAR DEPENDENT VISCOSITY , 1995 .
[7] A. Eden,et al. Exponential Attractors for Dissipative Evolution Equations , 1995 .
[8] R. Temam. Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .
[9] M. Vishik,et al. Attractors of Evolution Equations , 1992 .
[10] O. Ladyzhenskaya,et al. Attractors for Semigroups and Evolution Equations , 1991 .
[11] J. Hale. Asymptotic Behavior of Dissipative Systems , 1988 .
[12] J. Simon. Compact sets in the spaceLp(O,T; B) , 1986 .
[13] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 2017 .
[14] J. Málek,et al. Finite fractal dimension of the global attractor for a class of non-Newtonian fluids , 2000, Appl. Math. Lett..
[15] J. Málek,et al. Advanced topics in theoretical fluid mechanics , 1998 .
[16] G. Sell. Global attractors for the three-dimensional Navier-Stokes equations , 1996 .
[17] E. Olson,et al. Finite fractal dimension and Holder-Lipshitz parametrization , 1996 .
[18] Peter Constantin,et al. Global Lyapunov Exponents, Kaplan-Yorke Formulas and the Dimension of the Attractors for 2D Navier-Stokes Equations , 1985 .
[19] J. Hale. Infinite dimensional dynamical systems , 1983 .
[20] H. Baumgärtel,et al. Gajewski, H./Gröger, K./Zacharias, K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, VI, 281 S. Berlin. Akademie-Verlag. 1974. Preis 65,- M . , 1977 .
[21] H. Gajewski,et al. Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen , 1974 .