Large Time Behavior via the Method of ℓ-Trajectories

Abstract The method of l-trajectories is presented in a general setting as an alternative approach to the study of the large-time behavior of nonlinear evolutionary systems. It can be successfully applied to the problems where solutions suffer from lack of regularity or when the leading elliptic operator is nonlinear. Here we concentrate on systems of a parabolic type and apply the method to an abstract nonlinear dissipative equation of the first order and to a class of equations pertinent to nonlinear fluid mechanics. In both cases we prove the existence of a finite-dimensional global attractor and the existence of an exponential attractor.

[1]  M. Hjortso,et al.  Partial Differential Equations , 2010 .

[2]  Dalibor Pražák,et al.  On Finite Fractal Dimension of the Global Attractor for the Wave Equation with Nonlinear Damping , 2002 .

[3]  Josef Málek,et al.  On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case $p\geq2$ , 2001, Advances in Differential Equations.

[4]  Josef Málek,et al.  A Finite-Dimensional Attractor for Three-Dimensional Flow of Incompressible Fluids , 1996 .

[5]  J. Málek Weak and Measure-valued Solutions to Evolutionary PDEs , 1996 .

[6]  Kumbakonam R. Rajagopal,et al.  EXISTENCE AND REGULARITY OF SOLUTIONS AND THE STABILITY OF THE REST STATE FOR FLUIDS WITH SHEAR DEPENDENT VISCOSITY , 1995 .

[7]  A. Eden,et al.  Exponential Attractors for Dissipative Evolution Equations , 1995 .

[8]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[9]  M. Vishik,et al.  Attractors of Evolution Equations , 1992 .

[10]  O. Ladyzhenskaya,et al.  Attractors for Semigroups and Evolution Equations , 1991 .

[11]  J. Hale Asymptotic Behavior of Dissipative Systems , 1988 .

[12]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[13]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 2017 .

[14]  J. Málek,et al.  Finite fractal dimension of the global attractor for a class of non-Newtonian fluids , 2000, Appl. Math. Lett..

[15]  J. Málek,et al.  Advanced topics in theoretical fluid mechanics , 1998 .

[16]  G. Sell Global attractors for the three-dimensional Navier-Stokes equations , 1996 .

[17]  E. Olson,et al.  Finite fractal dimension and Holder-Lipshitz parametrization , 1996 .

[18]  Peter Constantin,et al.  Global Lyapunov Exponents, Kaplan-Yorke Formulas and the Dimension of the Attractors for 2D Navier-Stokes Equations , 1985 .

[19]  J. Hale Infinite dimensional dynamical systems , 1983 .

[20]  H. Baumgärtel,et al.  Gajewski, H./Gröger, K./Zacharias, K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, VI, 281 S. Berlin. Akademie-Verlag. 1974. Preis 65,- M . , 1977 .

[21]  H. Gajewski,et al.  Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen , 1974 .