Global geospace modeling: Tutorial and review

[1]  R. Wolf,et al.  The quasi-static (slow-flow) region of the magnetosphere , 1983 .

[2]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[3]  Tetsuya Sato,et al.  Global simulation of the solar wind-magnetosphere interaction: The importance of its numerical validity , 1990 .

[4]  Bram van Leer,et al.  Comment on “Modeling the magnetosphere for northward interplanetary magnetic field: Effects of electrical resistivity” by Joachim Raeder , 2000 .

[5]  John M. Dawson,et al.  Global simulation of the time-dependent magnetosphere , 1978 .

[6]  James F. Drake,et al.  Alfvénic collisionless magnetic reconnection and the Hall term , 2001 .

[7]  J. Lyon,et al.  A comparison of global numerical simulation results to data for the January 27–28, 1992, Geospace Environment Modeling challenge event , 1998 .

[8]  Patricia H. Reiff,et al.  Empirical polar cap potentials , 1997 .

[9]  D. Baker,et al.  Reexamination of driven and unloading aspects of magnetospheric substorms , 1997 .

[10]  T. Ogino A three-dimensional MHD simulation of the interaction of the solar wind with the earth's magnetosphere - The generation of field-aligned currents , 1986 .

[11]  S. Brecht Global simulations using MHD codes: A few points to consider before you try one , 1985 .

[12]  V. Vasyliūnas,et al.  Mathematical models of magnetospheric convection and its coupling to the ionosphere , 1970 .

[13]  R. Wolf,et al.  Relationships of models of the inner magnetosphere to the Rice Convection Model , 2001 .

[14]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow , 1977 .

[15]  J. L. Karty,et al.  Distribution of convection potential around the polar cap boundary as a function of the interplanetary magnetic field , 1989 .

[16]  H. C. Yee Construction of explicit and implicit symmetric TVD schemes and their applications. [Total Variation Diminishing for fluid dynamics computation] , 1987 .

[17]  L. J. Cahill,et al.  Magnetopause structure and attitude from Explorer 12 observations. , 1967 .

[18]  Akira Kageyama,et al.  A global simulation of the magnetosphere with a long tail: Southward and northward interplanetary magnetic field , 1993 .

[19]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[20]  R. McPherron,et al.  7 – Physical Processes Producing Magnetospheric Substorms and Magnetic Storms , 1991 .

[21]  Dinshaw S. Balsara,et al.  Maintaining Pressure Positivity in Magnetohydrodynamic Simulations , 1999 .

[22]  J. Brackbill,et al.  The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .

[23]  R. M. Robinson,et al.  On calculating ionospheric conductances from the flux and energy of precipitating electrons , 1987 .

[24]  G. Sod Numerical methods in fluid dynamics , 1985 .

[25]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[26]  Jay P. Boris,et al.  Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works , 1973 .

[27]  B. Anderson,et al.  Current disruptions in the near-Earth neutral sheet region , 1992 .

[28]  J. Hawley,et al.  Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .

[29]  A. Harten,et al.  Self-adjusting hybrid schemes for shock computations , 1972 .

[30]  Stephen Knight,et al.  Parallel electric fields , 1973 .

[31]  T. Tanaka,et al.  Generation mechanisms for magnetosphere-ionosphere current systems deduced from a three-dimensional MHD simulation of the solar wind-magnetosphere-ionosphere coupling processes , 1995 .

[32]  S. Zalesak,et al.  Fully Multidimensional Flux-Corrected Transport. , 1978 .

[33]  G. Tóth The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .

[34]  J. Slavin,et al.  Global simulation of the Geospace Environment Modeling substorm challenge event , 2001 .

[35]  M. Brio,et al.  An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .

[36]  James A. Slavin,et al.  Boundary layer formation in the magnetotail: Geotail observations and comparisons with a global MHD simulation , 1997 .

[37]  Antonius Otto,et al.  Geospace Environment Modeling (GEM) magnetic reconnection challenge: MHD and Hall MHD—constant and current dependent resistivity models , 2001 .

[38]  L. J. Cahill,et al.  Explorer 12 observations of the magnetopause current layer , 1968 .

[39]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[40]  John Lyon,et al.  Computer Simulation of a Geomagnetic Substorm , 1981 .

[41]  Daniel N. Baker,et al.  Neutral line model of substorms: Past results and present view , 1996 .

[42]  Guang-Shan Jiang,et al.  A High-Order WENO Finite Difference Scheme for the Equations of Ideal Magnetohydrodynamics , 1999 .

[43]  R. W. Spiro,et al.  Dependence of polar cap potential drop on interplanetary parameters , 1981 .

[44]  H. C. Yee,et al.  On symmetric and upwind TVD schemes , 1985 .

[45]  R. McPherron,et al.  Timing of substorm signatures during the November 24, 1996, Geospace Environment Modeling event , 2001 .

[46]  J. Lyon,et al.  The solar wind-magnetosphere-ionosphere current-voltage relationship , 1987 .

[47]  C. Richard DeVore,et al.  Flux-corrected transport techniques for multidimensional compressible magnetohydrodynamics , 1989 .

[48]  R. Schunk,et al.  Transport equations for multicomponent anisotropic space plasmas - A review , 1982 .

[49]  Michael Hesse,et al.  Geospace Environmental Modeling (GEM) magnetic reconnection challenge , 2001 .

[50]  T. Pulkkinen,et al.  Auroral fading in ionosphere‐magnetosphere coupling model: Implications for possible mechanisms , 1995 .

[51]  G. Paschmann,et al.  Bursty bulk flows in the inner central plasma sheet , 1992 .

[52]  R. Walker,et al.  A global magnetohydrodynamic simulation of the response of the magnetosphere to a northward turning of the interplanetary magnetic field , 1994 .

[53]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .

[54]  M. Heinemann Role of collisionless heat flux in magnetospheric convection , 1999 .

[55]  C. Russell,et al.  Statistical characteristics of bursty bulk flow events , 1994 .

[56]  P. Lax,et al.  Systems of conservation laws , 1960 .

[57]  Paul R. Woodward,et al.  A High-Order Godunov-Type Scheme for Shock Interactions in Ideal Magnetohydrodynamics , 1997, SIAM J. Sci. Comput..

[58]  J. Raeder,et al.  On the transition from collisionless to collisional magnetohydrodynamics , 2001 .

[59]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[60]  Zhiwei Ma,et al.  Hall magnetohydrodynamic reconnection: The Geospace Environment Modeling challenge , 2001 .

[61]  Joachim Raeder,et al.  The structure of the distant geomagnetic tail during long periods of northward IMF , 1995 .

[62]  Eugene N. Parker,et al.  The alternative paradigm for magnetospheric physics , 1996 .

[63]  J. Raeder Modeling the magnetosphere for northward interplanetary magnetic field: Effects of electrical resistivity , 1999 .

[64]  M. Ashour‐Abdalla,et al.  Observations of plasmas and magnetic fields in Earth's distant magnetotail: Comparison with a global MHD model , 1995 .

[65]  Michael Hesse,et al.  Collisionless magnetic reconnection: Electron processes and transport modeling , 2001 .

[66]  J. Moen,et al.  The solar flux influence on quiet time conductances in the auroral ionosphere , 1993 .

[67]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[68]  T. Fuller‐Rowell,et al.  Global Simulation of Magnetospheric Space Weather Effects of the Bastille Day Storm , 2001 .

[69]  S. Krimigis,et al.  A case study of magnetotail current sheet disruption and diversion , 1988 .

[70]  Michael Hesse,et al.  Geospace Environment Modeling (GEM) magnetic reconnection challenge: Resistive tearing, anisotropic pressure and Hall effects , 2001 .

[71]  T. Mukai,et al.  Observations of plasma sheet dynamics earthward of the onset region with the Geotail spacecraft , 2001 .

[72]  J. Lyon,et al.  Global numerical simulation of the growth phase and the expansion onset for a substorm observed by Viking , 1995 .

[73]  John Lyon,et al.  A time dependent three‐dimensional simulation of the Earth's magnetosphere: Reconnection events , 1982 .

[74]  R. Roble,et al.  Electrodynamic effects of thermospheric winds from the NCAR Thermospheric General Circulation Model , 1987 .

[75]  K. Papadopoulos,et al.  Simulation of the March 9, 1995, substorm: Auroral brightening and the onset of lobe reconnection , 1998 .

[76]  Phillip Colella,et al.  A Higher-Order Godunov Method for Multidimensional Ideal Magnetohydrodynamics , 1994, SIAM J. Sci. Comput..