Stochastic goal programming in forest planning

Developing a forest management plan in a multicriteria perspective is traditionally accomplished utilizing simulation and optimization tools as a means to predict and optimize a variety of criteria under consideration. Goal programming is a useful tool to balance conflicting aspects of the competing criteria. When information regarding an aspect of uncertainty is available, stochastic programming should be utilized to efficiently integrate this additional information. Research has been conducted into determining the accuracy of forest inventory methods; however, the measurement error is typically ignored when generating forest management plans. Through integrating the uncertainty in a systematic fashion, the forest management plan can be improved by describing the potential uncertainty in the plan and by managing the influences of this uncertainty. This paper develops three stochastic goal programming formulations and highlights the usefulness of the approach on a small forest holding.

[1]  Horand I. Gassmann,et al.  Optimal harvest of a forest in the presence of uncertainty , 1989 .

[2]  Fouad Ben Abdelaziz,et al.  Solution approaches for the multiobjective stochastic programming , 2012, Eur. J. Oper. Res..

[3]  A. Wierzbicki A Mathematical Basis for Satisficing Decision Making , 1982 .

[4]  Ljusk Ola Eriksson,et al.  Planning under uncertainty at the forest level: A systems approach , 2006 .

[5]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[6]  Kaisa Miettinen,et al.  Simultaneous optimization of harvest schedule and measurement strategy , 2014 .

[7]  D. Boychuk,et al.  A Multistage Stochastic Programming Model for Sustainable Forest-Level Timber Supply Under Risk of Fire , 1996, Forest Science.

[8]  Rb Flavell,et al.  A new goal programming formulation , 1976 .

[9]  Laureano F. Escudero,et al.  Forestry management under uncertainty , 2011, Ann. Oper. Res..

[10]  John R. Birge,et al.  Introduction to Stochastic programming (2nd edition), Springer verlag, New York , 2011 .

[11]  C. Lemieux Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .

[12]  A. Shapiro Monte Carlo Sampling Methods , 2003 .

[13]  Antti Mäkinen,et al.  SIMO: An adaptable simulation framework for multiscale forest resource data , 2009 .

[14]  Davide La Torre,et al.  The Stochastic Goal Programming Model: Theory and Applications , 2012 .

[15]  E. Næsset Accuracy of forest inventory using airborne laser scanning: evaluating the first nordic full-scale operational project , 2004 .

[16]  K. Korhonen,et al.  Kuvioittaisen arvioinnin luotettavuus , 1970 .

[17]  George Z. Gertner Prediction bias and response surface curvature , 1991 .

[18]  Davide La Torre,et al.  A generalized stochastic goal programming model , 2010, Appl. Math. Comput..

[19]  Mikko Kurttila,et al.  Using preference information in developing alternative forest plans , 2010 .

[20]  Mehrdad Tamiz,et al.  Goal programming for decision making: An overview of the current state-of-the-art , 1998, Eur. J. Oper. Res..

[21]  L. Lasdon,et al.  On a bicriterion formation of the problems of integrated system identification and system optimization , 1971 .

[22]  D. Kuhn Generalized Bounds for Convex Multistage Stochastic Programs , 2004 .

[23]  Bruno Contini,et al.  A Stochastic Approach to Goal Programming , 1968, Oper. Res..

[24]  Sang M. Lee,et al.  Goal programming for decision analysis , 1972 .

[25]  Annika Kangas,et al.  Correlations, distributions, and trends in forest inventory errors and their effects on forest planning , 2010 .

[26]  Carlos Romero,et al.  Making forestry decisions with multiple criteria: A review and an assessment , 2008 .

[27]  Alan J. King,et al.  Modeling with Stochastic Programming , 2012 .

[28]  Michael Bevers A chance constraint estimation approach to optimizing resource management under uncertainty , 2007 .

[29]  Annika Kangas,et al.  Evaluating the required scenario set size for stochastic programming in forest management planning: incorporating inventory and growth model uncertainty , 2016 .

[30]  M. Maltamo,et al.  The k-MSN method for the prediction of species-specific stand attributes using airborne laser scanning and aerial photographs , 2007 .

[31]  Yu Wei,et al.  A spatial stochastic programming model for timber and core area management under risk of fires , 2014 .

[32]  B. Rustem,et al.  Simulation and optimization approaches to scenario tree generation , 2004 .

[33]  A. Charnes,et al.  Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints , 1963 .

[34]  Roger M. Y. Ho,et al.  Goal programming and extensions , 1976 .

[35]  Annika Kangas,et al.  Using Cost-Plus-Loss Analysis to Define Optimal Forest Inventory Interval and Forest Inventory Accuracy , 2012 .