A smoothing Gauss-Newton method for the generalized HLCP

Abstract In this paper, we present a smoothing Gauss–Newton method for solving the generalized horizontal linear complementarity problem and prove that the method is both globally and locally quadratically convergent under reasonable assumptions. As a by-product of our analysis, we obtain a sufficient condition for the existence and boundedness of the solutions to the problem.

[1]  J. Frédéric Bonnans,et al.  Convergence of Interior Point Algorithms for the Monotone Linear Complementarity Problem , 1996, Math. Oper. Res..

[2]  M. Seethharama Gowda,et al.  An Analysis of Zero Set and Global Error Bound Properties of a Piecewise Affine Function via Its Recession Function , 1996, SIAM J. Matrix Anal. Appl..

[3]  Bintong Chen,et al.  A Global Linear and Local Quadratic Noninterior Continuation Method for Nonlinear Complementarity Problems Based on Chen-Mangasarian Smoothing Functions , 1999, SIAM J. Optim..

[4]  P. Tseng Analysis Of A Non-Interior Continuation Method Based On Chen-Mangasarian Smoothing Functions For Com , 1998 .

[5]  Christian Kanzow,et al.  Some Noninterior Continuation Methods for Linear Complementarity Problems , 1996, SIAM J. Matrix Anal. Appl..

[6]  M. Gowda,et al.  Reducing a Monotone Horizontal LCP to an LCP , 1995 .

[7]  Francisco Facchinei,et al.  A New Merit Function For Nonlinear Complementarity Problems And A Related Algorithm , 1997, SIAM J. Optim..

[8]  Osman Güler,et al.  Generalized Linear Complementarity Problems , 1995, Math. Oper. Res..

[9]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[10]  Olvi L. Mangasarian,et al.  The Extended Linear Complementarity Problem , 1995, SIAM J. Matrix Anal. Appl..

[11]  Liqun Qi,et al.  Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..

[12]  Debraj Ray,et al.  Game-Theoretical Applications to Economics and Operations Research , 1997 .

[13]  Nimrod Megiddo,et al.  A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems , 1991, Lecture Notes in Computer Science.

[14]  James V. Burke,et al.  The Global Linear Convergence of a Noninterior Path-Following Algorithm for Linear Complementarity Problems , 1998, Math. Oper. Res..

[15]  Song Xu,et al.  A non–interior predictor–corrector path following algorithm for the monotone linear complementarity problem , 2000, Math. Program..

[16]  R. Monteiro,et al.  Limiting behavior of the derivatives of certain trajectories associated with a monotone horizontal linear complementarity problem , 1996 .

[17]  Defeng Sun,et al.  Smoothing Functions and Smoothing Newton Method for Complementarity and Variational Inequality Problems , 2002 .

[18]  Yinyu Ye,et al.  A Fully Polynomial-Time Approximation Algorithm for Computing a Stationary Point of the General Linear Complementarity Problem , 1993, Math. Oper. Res..

[19]  Yin Zhang,et al.  On the Convergence of a Class of Infeasible Interior-Point Methods for the Horizontal Linear Complementarity Problem , 1994, SIAM J. Optim..

[20]  Defeng Sun,et al.  A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities , 2000, Math. Program..

[21]  M. Seetharama Gowda,et al.  The extended linear complementarity problem , 1995, Math. Program..

[22]  R. Sznajder,et al.  On the Lipschitz Continuity of the Solution Map in Some Generalized Linear Complementarity Problems , 1997 .

[23]  Michael C. Ferris,et al.  Convergence of an Infeasible Interior-Point Algorithm from Arbitrary Positive Starting Points , 1996, SIAM J. Optim..

[24]  M. Todd,et al.  Reducing horizontal linear complementarity problems , 1995 .

[25]  A. Willson A useful generalization of theP0 matrix concept , 1971 .