HOT STARS WITH HOT JUPITERS HAVE HIGH OBLIQUITIES

We show that stars with transiting planets for which the stellar obliquity is large are preferentially hot (T_(eff) > 6250 K). This could explain why small obliquities were observed in the earliest measurements, which focused on relatively cool stars drawn from Doppler surveys, as opposed to hotter stars that emerged more recently from transit surveys. The observed trend could be due to differences in planet formation and migration around stars of varying mass. Alternatively, we speculate that hot-Jupiter systems begin with a wide range of obliquities, but the photospheres of cool stars realign with the orbits due to tidal dissipation in their convective zones, while hot stars cannot realign because of their thinner convective zones. This in turn would suggest that hot Jupiters originate from few-body gravitational dynamics and that disk migration plays at most a supporting role.

[1]  R. Howe Solar Interior Rotation and its Variation , 2009, 0902.2406.

[2]  Eric B. Ford,et al.  Dynamical Outcomes of Planet-Planet Scattering , 2007, astro-ph/0703166.

[3]  David R. Soderblom,et al.  The Ages of Stars , 2007, 1003.6074.

[4]  Debra A. Fischer,et al.  A Determination of the Spin-Orbit Alignment of the Anomalously Dense Planet Orbiting HD 149026 , 2007 .

[5]  Michael C. Liu,et al.  RETIRED A STARS AND THEIR COMPANIONS. III. COMPARING THE MASS–PERIOD DISTRIBUTIONS OF PLANETS AROUND A-TYPE STARS AND SUN-LIKE STARS , 2009, 0912.0518.

[6]  Anita L. Cochran,et al.  The Spin-Orbit Alignment of the HD 17156 Transiting Eccentric Planetary System , 2008, 0806.4142.

[7]  R. Paul Butler,et al.  Measurement of the Spin-Orbit Angle of Exoplanet HAT-P-1b , 2008, 0806.1734.

[8]  C. Moutou,et al.  Transiting exoplanets from the CoRoT space mission: III. The spectroscopic transit of CoRoT-Exo-2b with SOPHIE and HARPS , 2008, 0803.3209.

[9]  John Asher Johnson,et al.  ON THE SPIN–ORBIT MISALIGNMENT OF THE XO-3 EXOPLANETARY SYSTEM , 2009, 0902.3461.

[10]  A. Barker,et al.  On the tidal evolution of Hot Jupiters on inclined orbits , 2009, 0902.4563.

[11]  M. Barbieri,et al.  Characterization of the HD 17156 planetary system , 2008, 0812.0785.

[12]  M. Tamura,et al.  Improved Measurement of the Rossiter–McLaughlin Effect in the Exoplanetary System HD 17156 , 2009, 0905.4727.

[13]  C. Moutou,et al.  Refined parameters and spectroscopic transit of the super-massive planet HD 147506b , 2007, 0707.0679.

[14]  Robert J. Vanderbei,et al.  THE TRANSIT INGRESS AND THE TILTED ORBIT OF THE EXTRAORDINARILY ECCENTRIC EXOPLANET HD 80606b , 2009, 0907.5205.

[15]  Yasuhiro H. Takahashi,et al.  Search for Outer Massive Bodies around Transiting Planetary Systems: Candidates of Faint Stellar Companions around HAT-P-7 , 2010, 1004.2458.

[16]  Joshua N. Winn,et al.  EXOPLANETARY SPIN–ORBIT ALIGNMENT: RESULTS FROM THE ENSEMBLE OF ROSSITER–MCLAUGHLIN OBSERVATIONS , 2009, 0902.0737.

[17]  R. G. West,et al.  WASP-17b: AN ULTRA-LOW DENSITY PLANET IN A PROBABLE RETROGRADE ORBIT , 2009, 0908.1553.

[18]  Measurement of the Spin-Orbit Alignment in the Exoplanetary System HD 189733 , 2006, astro-ph/0609506.

[19]  G. Marcy,et al.  THE HAT-P-13 EXOPLANETARY SYSTEM: EVIDENCE FOR SPIN–ORBIT ALIGNMENT AND A THIRD COMPANION , 2010, 1003.4512.

[20]  Joshua N. Winn,et al.  A Third Exoplanetary System with Misaligned Orbital and Stellar Spin Axes , 2009, 0907.5204.

[21]  Michel Mayor,et al.  The Rossiter-McLaughlin effect of CoRoT-3b and HD 189733b , 2009, 0907.2956.

[22]  Howard Isaacson,et al.  DISCOVERY AND ROSSITER–McLAUGHLIN EFFECT OF EXOPLANET KEPLER-8b , 2010, 1001.0416.

[23]  J. Winn,et al.  A Possible Spin-Orbit Misalignment in the Transiting Eccentric Planet HD 17156b , 2007, 0712.2569.

[24]  S. Tremaine,et al.  Resonant Capture by Inward-migrating Planets , 2000, astro-ph/0009255.

[25]  John Asher Johnson,et al.  A PROGRADE, LOW-INCLINATION ORBIT FOR THE VERY HOT JUPITER WASP-3b , 2010, 1004.0692.

[26]  Edwin L. Turner,et al.  Measurement of the Rossiter–McLaughlin Effect in the Transiting Exoplanetary System TrES-1 , 2007, astro-ph/0702707.

[27]  K. Enya,et al.  Spin-Orbit Alignment for the Eccentric Exoplanet HD 147506b , 2007, 0707.0503.

[28]  M. Pinsonneault,et al.  The Mass of the Convective Zone in FGK Main-Sequence Stars and the Effect of Accreted Planetary Material on Apparent Metallicity Determinations , 2001, astro-ph/0105257.

[29]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .

[30]  R. Paul Butler,et al.  The Prograde Orbit of Exoplanet TrES-2b , 2008, 0804.2259.

[31]  Motohide Tamura,et al.  First Evidence of a Retrograde Orbit of a Transiting Exoplanet HAT-P-7b , 2009, 0908.1673.

[32]  C. Moutou,et al.  Misaligned spin-orbit in the XO-3 planetary system?† , 2008, Proceedings of the International Astronomical Union.

[33]  C. Moutou,et al.  Photometric and spectroscopic detection of the primary transit of the 111-day-period planet HD 80 606 b , 2009, 0902.4457.

[34]  R. Paul Butler,et al.  Measurement of Spin-Orbit Alignment in an Extrasolar Planetary System , 2005, astro-ph/0504555.

[35]  M. Pinsonneault,et al.  Evolutionary models of the rotating sun , 1989 .

[36]  G. Chabrier,et al.  FALLING TRANSITING EXTRASOLAR GIANT PLANETS , 2009, 0901.2048.

[37]  R. Paul Butler,et al.  DISCOVERY OF A TRANSITING PLANET AND EIGHT ECLIPSING BINARIES IN HATNet FIELD G205 , 2009 .

[38]  P. Bodenheimer,et al.  Orbital migration of the planetary companion of 51 Pegasi to its present location , 1996, Nature.

[39]  Peter P. Eggleton,et al.  Orbital Evolution in Binary and Triple Stars, with an Application to SS Lacertae , 2001, astro-ph/0104126.