Flow laws and fabric transitions in wet quartzite

[1]  R. Heilbronner,et al.  The brittle-to-viscous transition in polycrystalline quartz: An experimental study , 2018, Journal of Structural Geology.

[2]  C. Holyoke,et al.  Deformation of Fine‐Grained Quartz Aggregates by Mixed Diffusion and Dislocation Creep , 2018, Journal of Geophysical Research: Solid Earth.

[3]  N. Mansard,et al.  Strain Localization Within a Syntectonic Intrusion in a Back‐Arc Extensional Context: The Naxos Monzogranite (Greece) , 2018 .

[4]  R. Heilbronner,et al.  Analysis of crystallographic preferred orientations of experimentally deformed Black Hills Quartzite , 2017 .

[5]  R. Heilbronner,et al.  The grain size(s) of Black Hills Quartzite deformed in the dislocation creep regime , 2017 .

[6]  D. Prior,et al.  Effects of secondary phases on crystallographic preferred orientations in mylonites , 2017 .

[7]  D. Prior,et al.  The recrystallized grain size piezometer for quartz: An EBSD‐based calibration , 2017 .

[8]  R. Heilbronner,et al.  Stresses and pressures at the quartz‐to‐coesite phase transformation in shear deformation experiments , 2016 .

[9]  J. Avouac,et al.  The influence of stress history on the grain size and microstructure of experimentally deformed quartzite , 2016 .

[10]  G. Hirth,et al.  Experimental constraints on the role of dynamic recrystallization on resetting the Ti‐in‐quartz thermobarometer , 2015 .

[11]  M. Behn,et al.  Compositional dependence of lower crustal viscosity , 2015 .

[12]  N. Beeler,et al.  The role of fluid pressure on frictional behavior at the base of the seismogenic zone , 2015 .

[13]  C. Teyssier,et al.  Petrofabrics of high‐pressure rocks exhumed at the slab‐mantle interface from the “point of no return” in a subduction zone (Sivrihisar, Turkey) , 2014 .

[14]  R. Law Deformation thermometry based on quartz c-axis fabrics and recrystallization microstructures: A review , 2014 .

[15]  G. Hirth,et al.  The effect of muscovite on the fabric evolution of quartz under general shear , 2014 .

[16]  J. Platt,et al.  Rheological evolution of a Mediterranean subduction complex , 2013 .

[17]  C. Holyoke,et al.  Reversible water weakening of quartz , 2013 .

[18]  J. Avouac,et al.  Constraints from rocks in the Taiwan orogen on crustal stress levels and rheology , 2012 .

[19]  D. Prior,et al.  Electron backscatter diffraction analysis to determine the mechanisms that operated during dynamic recrystallisation of quartz-rich rocks , 2012 .

[20]  D. Kohlstedt,et al.  Grain boundary sliding in San Carlos olivine: Flow law parameters and crystallographic‐preferred orientation , 2011 .

[21]  J. Platt,et al.  A naturally constrained stress profile through the middle crust in an extensional terrane , 2011 .

[22]  R. Heilbronner,et al.  Plastic anisotropy and fabric evolution in sheared and recrystallized quartz single crystals , 2011 .

[23]  C. Holyoke,et al.  Accurate differential stress measurement using the molten salt cell and solid salt assemblies in the Griggs apparatus with applications to strength, piezometers and rheology , 2010 .

[24]  J. Behrmann,et al.  A new perspective on paleopiezometry: Dynamically recrystallized grain size distributions indicate mechanism changes , 2010 .

[25]  S. Nayak,et al.  TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz , 2010 .

[26]  G. Hirth,et al.  Effect of aqueous and carbonic fluids on the dislocation creep strength of quartz , 2009 .

[27]  Georg Dresen,et al.  Rheology of the Lower Crust and Upper Mantle: Evidence from Rock Mechanics, Geodesy, and Field Observations , 2008 .

[28]  K. Kunze,et al.  Dynamic recrystallization near the brittle-plastic transition in naturally and experimentally deformed quartz aggregates , 2008 .

[29]  R. Heilbronner,et al.  Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite , 2006 .

[30]  C. Holyoke,et al.  Mechanisms of weak phase interconnection and the effects of phase strength contrast on fabric development , 2006 .

[31]  H. Behrens,et al.  Effect of water on the dislocation creep microstructure and flow stress of quartz and implications for the recrystallized grain size piezometer , 2006 .

[32]  Ernest H. Rutter,et al.  Experimental grain size-sensitive flow of hot-pressed Brazilian quartz aggregates , 2004 .

[33]  E. Rutter,et al.  Experimental intracrystalline plastic flow in hot-pressed synthetic quartzite prepared from Brazilian quartz crystals , 2004 .

[34]  J. Tullis,et al.  The recrystallized grain size piezometer for quartz , 2003 .

[35]  R. Heilbronner,et al.  The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C , 2002 .

[36]  R. Heilbronner,et al.  The effect of static annealing on microstructures and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear , 2002, Geological Society, London, Special Publications.

[37]  David L. Goldsby,et al.  Superplastic deformation of ice: Experimental observations , 2001 .

[38]  C. Teyssier,et al.  An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks , 2001 .

[39]  M. Paterson,et al.  Rock deformation tests to large shear strains in torsion , 2000 .

[40]  T. Fliervoet,et al.  Evidence for dominant grain-boundary sliding deformation in greenschist- and amphibolite-grade polymineralic ultramylonites from the Redbank Deformed Zone, Central Australia , 1997 .

[41]  David L. Goldsby,et al.  Grain boundary sliding in fine-grained ice I , 1997 .

[42]  J. Tullis,et al.  Effects of chemical environment on dislocation creep of quartzite , 1996 .

[43]  B. Evans,et al.  Strength of the lithosphere: Constraints imposed by laboratory experiments , 1995 .

[44]  J. Tullis,et al.  A flow law for dislocation creep of quartz aggregates determined with the molten salt cell , 1995 .

[45]  Greg Hirth,et al.  Experimental constraints on the dynamics of the partially molten upper mantle: Deformation in the diffusion creep regime , 1995 .

[46]  K. Pitzer,et al.  EQUATIONS OF STATE VALID CONTINUOUSLY FROM ZERO TO EXTREME PRESSURES FOR H2O AND CO2 , 1994 .

[47]  G. Hirth,et al.  The brittle‐plastic transition in experimentally deformed quartz aggregates , 1994 .

[48]  H. Wenk,et al.  Effect of muscovite on the strength and lattice preferred orientations of experimentally deformed quartz aggregates , 1994 .

[49]  G. Hirth,et al.  Dislocation creep regimes in quartz aggregates , 1992 .

[50]  M. Paterson,et al.  Preparation and deformation of synthetic aggregates of quartz , 1992 .

[51]  C. Teyssier,et al.  Quartz c-axis fabric differences between porphyroclasts and recrystallized grains , 1991 .

[52]  R. George,et al.  Effect of water on the rheology of experimentally deformed quartzite , 1989 .

[53]  A. Kronenberg,et al.  Flow strengths of quartz aggregates: Grain size and pressure effects due to hydrolytic weakening , 1984 .