Eigenvalue techniques for proving bounds for convex objective, nonconvex programs 1
暂无分享,去创建一个
[1] Arkadi Nemirovski,et al. Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.
[2] Sinan Gürel,et al. A strong conic quadratic reformulation for machine-job assignment with controllable processing times , 2009, Oper. Res. Lett..
[3] Gene H. Golub,et al. Some modified matrix eigenvalue problems , 1973, Milestones in Matrix Computation.
[4] Oktay Günlük,et al. Perspective reformulations of mixed integer nonlinear programs with indicator variables , 2010, Math. Program..
[5] Tamás Terlaky,et al. A Survey of the S-Lemma , 2007, SIAM Rev..
[6] Shuzhong Zhang,et al. New Results on Quadratic Minimization , 2003, SIAM J. Optim..
[7] E. Yaz. Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.
[8] Claudio Gentile,et al. Perspective cuts for a class of convex 0–1 mixed integer programs , 2006, Math. Program..
[9] Daniel Bienstock,et al. Computational Study of a Family of Mixed-Integer Quadratic Programming Problems , 1995, IPCO.
[10] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[11] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[12] Henry Wolkowicz,et al. Indefinite Trust Region Subproblems and Nonsymmetric Eigenvalue Perturbations , 1995, SIAM J. Optim..
[13] Shuzhong Zhang,et al. On Cones of Nonnegative Quadratic Functions , 2003, Math. Oper. Res..
[14] Stephen P. Boyd,et al. Linear Matrix Inequalities in Systems and Control Theory , 1994 .
[15] Franz Rendl,et al. A semidefinite framework for trust region subproblems with applications to large scale minimization , 1997, Math. Program..